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Abstract

This paper models an infinitely repeated Tullock contest in which two contes-

tants contribute efforts to accumulate individual asset stocks over time. To investi-

gate the transitional dynamics of the contest in the case of a general cost function,

we linearize the model around the steady state. Our analysis shows that optimal

asset stocks and their speed of convergence to the steady state crucially depend on

the elasticity of marginal effort costs, the discount factor and the depreciation rate.

We further analyze the effects of second prizes in the transition to the steady state

as well as in the steady state itself. For a cost function with a constant elasticity

of marginal costs, a lower discount factor, a higher depreciation rate and a lower

elasticity imply a higher speed of convergence to the steady state. Moreover, a

higher prize spread increases individual and aggregate asset stocks, but does not

alter the balance of the contest in the long run. During the transition, a higher

prize spread increases asset stocks and produces a more balanced contest in each

period. Finally, a higher prize spread increases the speed of convergence to the

steady state.
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1 Introduction

Competition is the essence of economics. Individuals and organizations compete for

scarce goods, opportunities, positions, and status. Many of these competitions take the

form of contests in which competitors make efforts by investing tangible and intangible

resources and are rewarded based on their relative “efforts.” In the context of business, for

example, employees compete in promotion contests (Rosen, 1986 and Bognanno, 2001),

firms compete in market share contests (Schmalensee, 1976; Piga, 1998) and R&D labs

compete in patent race contests (Loury, 1970; Taylor, 1995). Competition in the form

of contests, however, is not limited to the world of business. Contests can be observed

in all fields of social life. Litigation (Wärneryd, 2000; Baye et al., 2005), rent-seeking

(Farmer and Pecorino, 1999; Baye and Hoppe, 2003; Grossmann and Dietl, 2010), sport

championships (Szymanski, 2003; Dietl et al. 2009), political campaigns (Glazer and

Gradstein, 2005; Klumpp and Polborn, 2006), military conflicts (Garfinkel and Skaperdas,

2007), and many other forms of competitions take the form of contests.

Contests are usually modeled as static one-shot games. While this static approach may

be sufficient to highlight many important aspects of contests, it ignores the fact that effort

decisions in contests are often inter-temporarily connected. The effort invested in today’s

contest may affect the probability of winning tomorrow’s contest. If a political party, for

example, campaigns for electoral votes, it builds a political reputation that may affect

not only this but also subsequent elections. Inter-temporal effects in contests have been

analyzed in some specific economic fields. For example, Wirl (1994) presents a dynamic

model in continuous time on lobbying. Moreover, Gradstein (1998) and Gradstein and

Konrad (1999) study the design of multi-round contests with the elimination of the loser

in each round, while Gurtler and Munster (2009) analyze sabotage in a tournament with

two rounds. Leininger and Yang (1994) consider dynamic rent-seeking games with linear

effort costs and show that wasteful expenditures in sequential-move games with an infinite

time horizon are lower than in static simultaneous-move games.

Our paper analyzes the transitional dynamics in a classic Tullock contest with a

general cost function. We further investigate the effect of second prizes on the transitional

dynamics.1 For this purpose, we consider a dynamic contest with an infinite time horizon,

in which a Tullock contest is played every period by two contestants. In each period,

both contestants simultaneously exert efforts by investing in some form of “asset,” such

as reputation, human capital, market share, prestige, weapons and so on. This asset

stock depreciates over time and, in each period, determines the probability of winning an

exogenous first prize (winner) and second prize (loser).2

1For a literature review about multiple-prize contests and the optimal allocation of prizes, see Sisak
(2009).

2Note that a contest designer might be interested in the overall quality of the contest measured by
the level of aggregate efforts. Simultaneously, a balanced contest could be another goal of the designer.
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This paper contributes to the literature by showing how the effort cost function and

second prizes affect the transitional dynamics. We extend the model of Yildirim (2005),

who analyzes a two-stage contest with two players and a Tullock contest success function.

In his model, the players have the possibility of adding to their previous efforts after

having observed their rival’s most recent efforts (Stackelberg game). We extend Yildirim’s

model to an infinitely-repeated contest and generalize the results for a general convex cost

function. Contrary to Yildirim (2005), we allow the designer of the contest to offer first

and second prizes instead of a single prize for the winner.

Our paper also complements the analysis by Szymanski and Valletti (2005), who

model the incentive effects of contest prizes in a static game, along two dimensions.

In contrast to Szymanski and Valletti (2005), we consider repeated instead of one-shot

contests and we use a general cost function rather than linear costs. Moreover, we extend

the paper by Grossmann et al. (2010), who analyze the investment behavior of clubs in a

dynamic contest model of a professional team sports league. The authors focus on linear

and quadratic costs as well as on the effect of revenue sharing on competitive balance.

Their model shows that revenue sharing decreases competitive balance and the steady

state is attained immediately if investment costs for playing talent are linear. Moreover,

they find that revenue sharing decreases the speed of convergence to the steady state if

investment costs for playing talent are quadratic. We generalize the model of Grossmann

et al. (2010) by assuming a general convex cost function. In particular, we linearize the

accumulation and Euler equation around the steady state. This approach allows us to

investigate how the elasticity of marginal costs changes incentives to exert effort. To the

best of our knowledge, the linearization procedure has not yet been applied to a Tullock

contest model.

Our model shows that the speed of convergence crucially depends on the elasticity

of marginal costs with respect to steady state efforts, the discount factor and the depre-

ciation rate. We further investigate the effects of second prizes in the transition to the

steady state as well as in the steady state itself.

The remainder of this paper is structured as follows. Section 2 introduces the model

with its main assumptions, the optimality conditions and the steady state. In Section

3, we analyze the transitional dynamics of the model. Section 4 summarizes the main

findings and concludes the paper.

For instance, in sports, a contest rather gains attention when the outcome is uncertain (Dietl, Lang,
Rathke 2010).
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2 Model

2.1 Notation and Assumptions

Consider an infinitely repeated Tullock contest in discrete time with two contestants. In

each period t ∈ {0, ...,∞}, each contestant i ∈ {1, 2} expends irreversible efforts ei,t ∈ R+
0

to accumulate an asset stock Ei,t ∈ R+
0 .3 Efforts are undertaken simultaneously, and the

asset stock depreciates over time. The accumulation equation for the asset stock is given

by4

Ei,t = (1− δ)Ei,t−1 + ei,t, (1)

with i ∈ {1, 2} and t ∈ {0, ...,∞}. The parameter δ ∈ (0, 1) represents the depreciation

factor. Equation (1) shows that efforts are necessary to maintain the existing asset stock.

Before the competition starts, i.e., in period t = −1, each contestant i is assumed to have

an initial asset stock given by Ei,−1 ∈ R+
0 .

In each period t, the available asset stock of contestant i determines which contestant

wins the exogenously-given prize fund V ∈ R+, which is divided between the winner and

the loser of the contest. We assume that the winner receives kV and the loser receives

(1 − k)V with k ∈ (1
2
, 1]. That is, k is the fraction of the prize fund allocated to the

first prize and (2k − 1) characterizes the spread between first and second prize (”prize

spread”). In the subsequent analysis, it holds that i, j ∈ {1, 2}, j 6= i and t ∈ {0, ...,∞},
unless otherwise stated.

To calculate the probability pi ∈ [0, 1] that contestant i wins the first prize kV in

period t, we utilize the Tullock contest success function (CSF) which is a widely-used

functional form of a CSF in the contest literature. Its general form was provided by

Tullock (1980) and axiomatized by Skaperdas (1996) and Clark and Riis (1998). The

Tullock CSF is given by

pi(Ei,t, Ej,t) =


Eγi,t

Eγi,t+E
γ
j,t

if max{Ei,t, Ej,t} > 0

1
2

otherwise
(2)

If contestant i does not win the first prize, it will win the second prize with certainty.

Hence, the probability that contestant i wins the second prize (1 − k)V is given by

(1 − pi(Ei,t, Ej,t)). The parameter γ ∈ R+ is called the ”discriminatory power” of the

CSF and reflects the degree to which the asset stock affects the winning probability.5

The ratio of the winning probabilities pi(Ei,t, Ej,t)/pj(Ei,t, Ej,t) describes how even

the contest is in period t. The contest is more balanced if the value of this ratio gets

3This asset stock can include reputation, human capital, market share, prestige, weapons and so on.
4Note that Ei,t characterizes the state variable in our model.
5See, e.g., Dietl et al. (2008) for an analysis of the parameter γ in a static contest model. Moreover,

Corchón and Dahm (2010) investigate foundations for prominent CSFs.
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closer to one.

We assume that efforts of contestant i generate costs according to a (strictly) convex

cost function C(ei,t) with C ′(ei,t) > 0 and C ′′(ei,t) > 0 for ei,t > 0, t ∈ {0, ...,∞}
and C ′(0) = 0. Note that we concentrate on the effect of asymmetrical initial asset

stocks on the optimal effort contributions of contestants over time and hence we consider

contestants with a symmetrically, strictly convex cost function but asymmetrical initial

asset stocks.

Contestant i’s expected profits πi,t in period t is given by expected revenues minus

costs:

πi,t(ei,t, Ei,t, Ej,t) = pi(Ei,t, Ej,t)kV + (1− pi(Ei,t, Ej,t))(1− k)V − C(ei,t)

With probability pi(Eit, Ejt), contestant i receives kV , and with probability (1−pi(Eit, Ejt))
she/he receives (1 − k)V at costs C(ei,t). Future profits are discounted by a factor

β ∈ (0, 1). We further assume that the outside option for each contestant is zero.

2.2 Optimality Conditions and the Steady State

To solve the model, we follow the approach in Grossmann et al. (2010) and utilize the

open-loop equilibrium concept. Under the assumption that efforts or investments are -

at least to some degree - not measurable or observable by the competitors, the open-

loop approach is the appropriate solution concept. If contestants were able to observe

the opponent’s effort level after each period, then the closed-loop approach would be

appropriate. However, we believe that in many contest situations, contestants are not

able to precisely evaluate the effort level chosen by their competitors such that the open-

loop approach should be applied.6

Contestant i maximizes its expected discounted profits
∑∞

t=0 β
tπi,t with respect to the

stream {ei,t}∞t=0 and subject to the accumulation equation for the asset stock given by

equation (1). We obtain the following Euler equation for contestant i ∈ {1, 2}:7

(2k − 1)V γEγ−1
i,t Eγ

j,t

(Eγ
i,t + Eγ

j,t)
2

= C ′(ei,t)− β(1− δ)C ′(ei,t+1). (3)

Henceforth, variables without a time subscript indicate steady states. We derive the

following results for a general, strictly convex cost function:

6For instance, suppose that a political party invests in lobbying activity for a political campaign.
Even if these investments (i.e., the monetary inputs) are common knowledge among all contestants,
some uncertainty regarding the actual effectiveness of the political campaign (i.e., the output) remains
for all other contestants. In such a scenario, the open-loop approach seems to be more adequate. See
Grossmann and Dietl (2009), who analyze the difference between closed-loop and open-loop equilibria in
a two-stage contest model of a sports league.

7See Appendix A.1 for the derivation of the Euler equation, the steady state and the comparative
statics.
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1. In the steady state, it holds that Ei = Ej ≡ E (implicitly defined by (2k −
1)γV/(4E) = [1− β(1− δ)]C ′(δE)) and ei = ej ≡ e (implicitly defined by e = δE).

It follows that pi(Ei, Ej) = pj(Ei, Ej) = 0.5 independently of initial asset stocks

and the weight k attached to the first prize. Therefore, efforts and asset stocks

are identical for both contestants in the steady state: that is, there is not only a

relative convergence but also absolute convergence of the asset stocks in the long

run if contestants have identical, strictly convex cost functions. This result holds

even if contestants start with different initial asset stocks Ei,−1 and Ej,−1.

2. One can show that the steady state values E and e are increasing in the prize spread

due to higher marginal benefits of effort. Therefore, if a contest organizer wants

to increase (individual and aggregate) efforts or (individual and aggregate) asset

stocks in the long run, she/he should increase the weight k attached to the first

prize. However, the prize spread does not affect the balance of the contest in the

long run because pi(Ei, Ej) = pj(Ei, Ej) holds independent of the weight k attached

to the first prize.

3. We find that a higher discount factor β implies a higher asset stock E in the steady

state. Because future expected profits get less discounted, incentives for contestants

to exert effort are higher such that also e increases in β. On the other hand, a higher

depreciation rate δ reduces the incentives for the contestants to accumulate asset

stocks in the steady state such that E decreases in δ. To observe the intuition behind

this result, note that a higher depreciation rate has two effects on the steady effort

e = δE(δ): (i) The steady asset stock E(δ) decreases in δ yielding lower steady state

efforts e to maintain the asset stock. (ii) A higher depreciation rate implies that

contestants must exert more effort to maintain the steady state asset stock. The

second effect dominates the first effect such that steady state efforts e are increasing

in the depreciation rate δ.

3 Transitional Dynamics

3.1 General Results

In this section, we investigate the dynamics of the model and analyze the transition (i.e.,

the short run) to the steady state. Because it is not possible to solve the model explicitly

in the case of a general cost function, we linearize the model around the steady state. In

particular, we linearize the accumulation equation (1) and the Euler equation (3) around

the steady state. This procedure permits us to approximately determine the optimal path

of the asset stocks for both contestants close to the steady state. It has an advantage

in that we do not have to specify the cost function, but we are still able to provide an
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explicit path of the asset stocks.

By linearizing the asset stock accumulation equation (1) around the steady state, we

obtain:

Êi,t+1 = (1− δ)Êi,t + δêi,t+1. (4)

Henceforth, a variable X̂t is defined as follows: X̂t = dXt/X = (Xt − X)/X, where X

represents the steady state value of the variable Xt. Hence, X̂t represents the percentage

deviation of Xt from the steady state value X.

By linearizing the Euler equation (3) around the steady state and using the results

from Section 2.2, we obtain:

Êi,t =
β(1− δ)σ(e)

1− β(1− δ)
êi,t+1 −

σ(e)

1− β(1− δ)
êi,t, (5)

where

σ(e) ≡ eC ′′(e)

C ′(e)
(6)

reflects the elasticity of marginal costs with respect to steady state efforts e. Using

equations (4) and (5), which hold for contestant i and analogously for contestant j, we

obtain the following system:
Êi,t+1

Êj,t+1

êi,t+1

êj,t+1


︸ ︷︷ ︸
≡Γt+1

=


δ(1−β(1−δ))
β(1−δ)σ(e)

+ 1− δ 0 δ
β(1−δ) 0

0 δ(1−β(1−δ))
β(1−δ)σ(e)

+ 1− δ 0 δ
β(1−δ)

1−β(1−δ)
β(1−δ)σ(e)

0 1
β(1−δ) 0

0 1−β(1−δ)
β(1−δ)σ(e)

0 1
β(1−δ)


︸ ︷︷ ︸

≡Q


Êi,t

Êj,t

êi,t

êj,t


︸ ︷︷ ︸
≡Γt

=⇒ Γt+1 = QΓt (7)

with i, j ∈ {1, 2} and j 6= i. We define the matrix of Eigenvalues of Q as

µ ≡


µ1 0 0 0

0 µ2 0 0

0 0 µ3 0

0 0 0 µ4


such that we obtain the decomposition Q = PµP−1.8 Hence, we conclude that

Γt+1 = QΓt ⇔ P−1Γt+1︸ ︷︷ ︸
≡Γ̃t+1

= µP−1Γt︸ ︷︷ ︸
≡Γ̃t

⇔ Γ̃t+1 = µΓ̃t.

8Without loss of generality, we assume that |µ1| ≤ |µ2|. See Hamilton (1994) and Greene (2000) for
a detailed review of the decomposition procedure.
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Hence, we have generated canonical variables:

Γ̃t+1 = µΓ̃t
Γ̃1,t+1

Γ̃2,t+1

Γ̃3,t+1

Γ̃4,t+1

 =


µ1 0 0 0

0 µ2 0 0

0 0 µ3 0

0 0 0 µ4




Γ̃1,t

Γ̃2,t

Γ̃3,t

Γ̃4,t

 =


µ1Γ̃1,t

µ2Γ̃2,t

µ3Γ̃3,t

µ4Γ̃4,t

 =


µt+1

1 Γ̃1,0

µt+1
2 Γ̃2,0

µt+1
3 Γ̃3,0

µt+1
4 Γ̃4,0

 .

If |µ1| < 1, |µ2| < 1, |µ3| > 1 and |µ4| > 1, then Γ̃3,0 and Γ̃4,0 must be zero to satisfy the

transversality condition.9 Then, we are able to solve for the original variables Γ1,t and

Γ2,t as follows:

Γ0 = P Γ̃0
Êi,0

Êj0

êi0

êj0

 = P


Γ̃1,0

Γ̃2,0

Γ̃3,0

Γ̃4,0

 = P


Γ̃1,0

Γ̃2,0

0

0


Hence, we get a system of four equations with four unknowns êi0, êj0, Γ̃1,0 and Γ̃2,0. Note

that Êi,0 and Êj,0 are determined by Ei,−1, Ej,−1, êi0 and êj0. In particular, this com-

putation determines the unique optimal time path of asset stocks and efforts. We can

establish the following lemma:

Lemma 1 Even if contestants have different initial asset stocks, there is a (locally)

unique solution of contestant efforts and asset stocks in the linearized model.

Proof. See Appendix A.2.

The lemma shows that there exists a unique solution of contestant efforts and asset

stocks in the linearized model: that is, there is a unique path of efforts that is optimal for

each contestant. As a result, we are able to negate the possibilities of ”multiple equilibria”

or ”no equilibrium”.

The dynamics of the state and control variables can be expressed as contingent on the

stable Eigenvalues. We derive the stable solution of the linearized version of the model

and we show that the dynamics of the model depend on the Eigenvalues of Q. First of

all, we recover system (7) and redefine the matrix Q in the following way:

Γt+1 = QΓt with

9The transversality condition in our model is different to the associated condition in standard growth
models. In standard growth models, there must be zero capital in the long run: see, e.g., King et al.
(1988). In our model, contestants have the following restriction: ex ante, expected profits must be
positive for both contestants. Otherwise, it is not optimal for contestants to participate in the contest.
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Q =


δ(1−β(1−δ))
β(1−δ)σ + 1− δ 0 δ

β(1−δ) 0

0 δ(1−β(1−δ))
β(1−δ)σ + 1− δ 0 δ

β(1−δ)
1−β(1−δ)
β(1−δ)σ 0 1

β(1−δ) 0

0 1−β(1−δ)
β(1−δ)σ 0 1

β(1−δ)

 ≡

a 0 b 0

0 c 0 d

m 0 f 0

0 g 0 h


Using this notation in the system given by equation (7), we obtain

Êi,t+1 = aÊi,t + bêi,t

Êj,t+1 = cÊj,t + dêj,t

êi,t+1 = mÊi,t + f êi,t

êj,t+1 = gÊj,t + hêj,t

with i, j ∈ {1, 2} and j 6= i. Combining equations Êi,t+1 = aÊi,t + bêi,t with êi,t+1 =

mÊi,t + f êi,t, we obtain the following second-order difference equation10

Êi,t+1 − aÊi,t
b

= êi,t

Êi,t+2 − aÊi,t+1

b
= mÊi,t + f

Êi,t+1 − aÊi,t
b

0 = Êi,t+2 − (a+ f)Êi,t+1 + (af − bm)Êi,t

0 = [L−1 − (a+ f) + (af − bm)L]Êi,t+1 (8)

The approximative dynamics are then summarized in Proposition 1.

Proposition 1 In the case of a general strictly convex cost function, the approximative

dynamics of efforts and asset stocks near the steady state for contestant i = {1, 2} are

summarized by equations

ei,t = e+ (µs + δ − 1)(Ei,−1 − E)µts,

Ei,t = E + (Ei,−1 − E)µt+1
s ,

for all t ∈ {0, ...,∞}, where the stable Eigenvalue µs ∈ (0, 1) of the linearized system is

given by

µs =
1

2

δ(1− β(1− δ))
β(1− δ)σ(e)

+
1 + β(1− δ)2

β(1− δ)
−

√(
δ(1− β(1− δ))
β(1− δ)σ(e)

+
1 + β(1− δ)2

β(1− δ)

)2

− 4

β

 .

Proof. See Appendix A.3.

According to Proposition 1, we obtain an explicit optimal path for efforts and as-

set stocks through the linearization method. Contestant i’s asset stock Ei,t converges

10Note that L denotes a lag operator.
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to the steady state asset stock E more quickly the closer the stable Eigenvalue of the

linearized system is to zero. Hence, the stable Eigenvalue crucially determines the speed

of convergence in the linearized model.

We can establish the following corollary which summarizes the main findings.

Corollary 1 For a general, strictly convex cost function, we derive the following results:

(i) Contestant i’s efforts ei,t monotonically increase (decrease) over time into the

steady state e if Ei,−1 > E (Ei,−1 < E).

(ii) Lower initial asset stocks Ei,−1 imply higher initial efforts.

(iii) The speed of convergence of asset stocks is lower, the higher is the stable Eigen-

value µs of the linearized system.

Regarding Part (i), one can show that (µs + δ − 1) is always smaller than zero. This

implies that contestant i’s efforts ei,t monotonically decrease over time into the steady

state e if the initial asset stock is smaller than the steady state asset stock, i.e., Ei,−1 < E.

Otherwise, if Ei,−1 > E, efforts ei,t monotonically increase over time into steady state

efforts e.

Part (ii) shows that initial asset stocks critically influence the path of efforts and the

asset stocks. For instance, suppose that Ei,−1 < E, then a lower value of Ei,−1 implies

higher initial efforts ei,0, ceteris paribus.

Regarding Part (iii), one can see from equation Ei,t = E+(Ei,−1−E)µt+1
s that a lower

(higher) stable Eigenvalue µs of the linearized system implies a higher (lower) speed of

convergence of the asset stocks. In particular, the asset stocks immediately converge to

the steady state value if the stable Eigenvalue converges to zero.

For a general convex cost function, the effect of the prize spread on the asset stocks

during the transition and the speed of convergence is ambiguous. Note that Ei,t =

E + (Ei,−1 − E)µt+1
s for each t ∈ {0, ...,∞} during the transition. The individual and

aggregate asset stocks depend on the prize spread because the steady state asset stock

E depends on the weight k attached to the first prize (see Section 2.2). Furthermore,

the stable Eigenvalue µs itself depends on (among other things) the elasticity of marginal

costs σ(e). According to Section 2.2, e itself depends on k as well. Therefore, it is not

unambiguous, how the individual as well as aggregate asset stocks depend on the weight

k attached to the first prize.

Similarly, for a general convex cost function, it is ambiguous how the elasticity of

marginal costs σ(e), the discount factor β and the depreciation rate δ affect the stable

Eigenvalue. It follows that the effect on the speed of convergence of asset stocks is also

not clear. To obtain further insights regarding the effects of the different parameters, we

analyze a specific class of strictly convex cost functions in the next section.
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3.2 Constant Elasticity of Marginal Costs

In this section, we analyze a cost function with a constant elasticity of marginal costs.

One can show that the elasticity of marginal costs with respect to steady state efforts e

denoted by σ(e) is constant and equals η if and only if the cost function is given by

C(ei,t) =
φ

1 + η
e1+η
i,t ,

where φ ∈ R+ and η ∈ R+ are constant parameters. In this case, the stable Eigenvalue

µs ∈ (0, 1) only depends on the constant parameters β, δ, η and is independent of the

weight k attached to the first prize because the elasticity σ does no longer depend on the

steady state efforts e.

3.2.1 The Effects of Elasticity of Marginal Costs, Discount Factor and De-

preciation Rate

First, we show how the elasticity of marginal costs, the discount factor and the depreci-

ation rate affect the speed of convergence of asset stocks to the steady state. Recall that

the stable Eigenvalue of the linearized system crucially influences the speed of conver-

gence. In particular, the speed of convergence is lower (higher), the higher (lower) is the

stable Eigenvalue.

Computing the partial derivative of the stable Eigenvalue with respect to the elasticity

σ yields

∂µs
∂σ

=
δ(1− β(1− δ)
2σ2β(1− δ)

−1 +
σ(1 + β(1− δ)2) + δ(1− β + βδ)

σβ(1− δ)
√(

δ(1−β(1−δ))
β(1−δ)σ + 1+β(1−δ)2

β(1−δ)

)2

− 4
β

 > 0.

Hence, we conclude that a higher (lower) elasticity of marginal costs with respect to

steady state efforts implies a higher (lower) Eigenvalue and therefore a lower (higher)

speed of convergence of the asset stocks. This result is because a high elasticity implies

a more sharply curved cost function which makes it rather profitable to smooth efforts

over time. If the elasticity is rather low, high efforts in the beginning of the contest are

profitable such that there is lower smoothing behavior over time, and hence, convergence

occurs much faster. In the limiting case of a linear cost function, the steady state asset

stock Ei for contestant i would be achieved immediately in the first period independent

of initial asset stocks.

How do the other parameters influence the stable Eigenvalue of the linearized system

and therefore the speed of convergence? We find that a higher discount factor β and/or a

11



lower depreciation rate δ imply a higher Eigenvalue, i.e., ∂µs/∂β > 0 and ∂µs/∂δ < 0.11

It follows that a higher (lower) β yields a lower (higher) speed of convergence of the asset

stocks. Conversely, the speed of convergence of the asset stocks is higher (lower), the

higher (lower) is the depreciation rate δ. If the discount factor is low, the future is less

important because future expected profits get more discounted and therefore convergence

occurs faster. In the limiting case of β = 0, the steady state would be immediately

attained in the first period. On the other hand, if the depreciation rate is high, a lower

percentage of the current asset stock is taken over to the next period and the speed of

convergence is higher. In the limiting case of δ = 1, the whole asset stock is depreciated

and convergence to the steady state occurs again in the first period.

The following corollary summarizes our results:

Corollary 2 For a cost function with a constant elasticity of marginal costs, the speed

of convergence of asset stocks is lower:

(i) the higher is the elasticity of marginal costs, (ii) the higher is the discount factor, and

(iii) the lower is the depreciation rate.

3.2.2 The Effect of the Second Prize

In this section, we investigate the effect of the second prize on the asset stocks in the

transition to the steady state and on the speed of convergence. First, we analyze how the

prize spread affects the asset stocks in the transition. From Section 2.2, we know that

∂E/∂k > 0. Therefore,

Ei,t = E + (Ei,−1 − E)µt+1
s = Ei,−1µ

t+1
s + (1− µt+1

s )E

is increasing in k because ∂Ei,t/∂k = (1 − µt+1
s )∂E/∂k > 0, i = {1, 2}. Then, we also

derive that the aggregate asset stock Ei,t + Ej,t = (Ei,−1 + Ej,−1)µt+1
s + 2(1 − µt+1

s )E is

increasing in k because ∂(Ei,t + Ej,t)/∂k = 2(1− µt+1
s )∂E/∂k > 0 with i, j ∈ {1, 2} and

j 6= i.

Moreover, we can show that the contest becomes more balanced if the weight k at-

tached to the first prize increases:

∂
(
pi,t
pj,t

)
∂k

= γ

(
E + (Ei,−1 − E)µt+1

s

E + (Ej,−1 − E)µt+1
s

)γ−1 (1− µt+1
s )µt+1

s (Ej,−1 − Ei,−1)

>0︷︸︸︷
∂E

∂k
(E + (Ej,−1 − E)µt+1

s )2

=⇒
∂
(
pi,t
pj,t

)
∂k


> 0 if Ej,−1 > Ei,−1

= 0 if Ej,−1 = Ei,−1

< 0 if Ej,−1 < Ei,−1

11Similar to the elasticity, it is easy to show that the partial derivative of µs with respect to β is always
positive, while the corresponding derivative with respect to δ is always negative.
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with i, j ∈ {1, 2} and j 6= i. Suppose that Ej,−1 < Ei,−1, then pi,t/pj,t > 1. Since

∂ (pi,t/pj,t) /∂k < 0, we know that the balance of the contest is increasing in k. Suppose

that Ej,−1 > Ei,−1, then pi,t/pj,t < 1. Since ∂ (pi,t/pj,t) /∂k > 0, we know that the

balance of the contest is increasing in k. If Ej,−1 = Ei,−1, then pi,t/pj,t = 1. Since

∂ (pi,t/pj,t) /∂k = 0, we know that the balance of the contest is not affected by changing

k.

In the case of a cost function with a constant elasticity of marginal costs, we are

able to explicitly determine the optimal asset stock path for each contestant through a

simulation. Suppose that δ = 0.1, β = 0.95, γ = 1, V = 1000, φ = 1, Ei,−1 = 20 and

Ej,−1 = 5. We vary η and k and obtain Figures 1a and 1b for contestant i and Figures

1c and 1d for contestant j.

Figure 1: Second Prize Effect on Asset Stock Convergence
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(a) Contestant i with η = 0.5 (b) Contestant i with η = 1
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(c) Contestant j with η = 0.5 (d) Contestant j with η = 1

In Figures 1a and 1c, we set η = 0.5: that is, there is a relatively low elasticity of

marginal costs. A higher k implies higher asset stocks during the transition as well as

in the steady state. However, if we set η = 1 (see Figure 1b and 1d), that is, a higher

elasticity of marginal costs, then the asset stock is lower in each period as compared to

η = 0.5 for a given k. Nonetheless, a higher k implies a higher asset stock in each period
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as well.

We now turn our attention to how the prize spread affects the speed of convergence

to the steady state. Figure 2, depicts the effect of a higher weight k attached to the first

prize on the speed of convergence of the winning probabilities and hence on the balance

of the contest. We use the same parameters as in Figure 1 and additionally set η = 1.

Figure 2: Second Prize Effect on Convergence of Winning Probabilities and Balance of
Contest
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(a) Convergence of pi,t > 0.5 and pj,t < 0.5 (b) Convergence of ratio pi,t/pj,t

In Figure 2a, a higher k implies a faster convergence of the winning probabilities, even

if a higher weight k attached to the first prize implies a higher steady state asset stock.

Figure 2b depicts this result: a higher parameter k increases the balance of the contest

in each period during the transition. In the long run, however, contestants’ winning

probabilities are balanced. Note that a higher k increases asset stocks in each period for

both contestants. However, increasing k has a relatively higher effect on the contestant

with the lower initial asset stock.

We establish Corollary 3 which summarizes our key findings.

Corollary 3 For a cost function with a constant elasticity of marginal costs, a higher

weight k attached to the first prize will:

(i) increase individual asset stocks as well as aggregate asset stocks during the transition

as well as in the steady state itself,

(ii) produce a more balanced contest in each period as long as contestants start with dif-

ferent initial asset stocks,

(iii) induce a faster convergence to the steady state independent of the elasticity of

marginal costs.

According to the corollary, there are three reasons for a contest designer to increase

the prize spread between first and second prize in the case of a cost function with a

constant elasticity of marginal costs:
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First, if the contest designer aims to increase individual and aggregate asset stocks

during the transition as well as in the steady state (see Section 2.2) itself, she/he should

augment the spread between first and second prize because incentives to exert efforts

increase in each period.

Second, a higher prize spread increases the balance of the contest in each period

during the transition if the contestants start with different initial asset stocks.12 In any

case, a fully balanced contest is achieved in the long run (steady state) independent of

the organizer’s choice of the spread between first and second prize.

Third, a contest designer can increase the speed of achieving a balanced contest by

increasing the weight attached to the first prize.

4 Conclusion

This paper has developed an infinitely repeated Tullock contest with a general cost func-

tion, in which two contestants contribute efforts to accumulate individual asset stocks.

We extend the literature by analyzing the incentive effects of second prizes, which have

not yet been analyzed in a dynamic contest model with a general cost function. In addi-

tion, we contribute to the literature by analyzing the effect of cost function specification

on the speed of convergence of asset stocks. To investigate the transitional dynamics of

the contest in the case of a general cost function, we use a linearized version of our model

around the steady state. This linearization procedure, which has not yet been applied

to a Tullock contest model, permits us to approximately determine the optimal path of

asset stocks for both contestants.

Our analysis shows that in the long run (steady state), efforts and asset stocks increase

with a higher prize spread and discount factor. On the other hand, a higher depreciation

rate induces a decrease in steady state asset stocks but an increase in the steady state

efforts. Our model further shows that optimal effort levels and their speed of conver-

gence to the steady state depend on the stable Eigenvalue of the linearized system. In

particular, the speed of convergence to the steady state is higher, the lower is the stable

Eigenvalue. In the case of a cost function with a constant elasticity of marginal costs,

a lower elasticity induces a faster convergence. Moreover, we find that the contestants’

efforts monotonically increase over time into the steady state if initial assets stocks are

larger than the steady state asset stocks. Moreover, a lower discount factor and/or a

higher depreciation rate imply a lower Eigenvalue and therefore a higher speed of conver-

gence. Our analysis further reveals that a higher spread between first and second prize

increases aggregate asset stocks but does not alter the balance of the contest in the long

run. During the transition, a higher prize spread increases the effort contributions of

12If contestants start with the same asset stocks, then the asset stocks of contestants are balanced in
each period.
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contestants as well as the balance of the contest in each period. Finally, a higher prize

spread increases the speed of convergence to the steady state.

Our study can be seen as a first step to elucidate the transitional dynamics in an

infinitely repeated Tullock contest with multiple prizes and a general cost function. We

encourage further research in this area. For example, one promising avenue for further

research might be the extension of our model to more than two contestants. Furthermore

it would be interesting to see how our results carry over to a setting in which contestants

are able to observe the opponents’ effort levels after each period (closed-loop concept).
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A Appendix

A.1 Derivation of the Euler equation, steady states and com-

parative statics

1. Euler equation:

Similar to Grossmann et al. (2010), we solve the dynamic program for contestant i

and obtain:

v(Ei,t−1) = max
ei,t,Ei,t

{pi(Ei,t, Ej,t)kV + (1− pi(Ei,t, Ej,t))(1− k)V − C(ei,t) + βv(Ei,t)}

subject to Ei,t = (1− δ)Ei,t−1 + ei,t,

where v(·) represents the contestant’s value function. Note that contestant i takes Ej,t

as given in period t ∈ {0, ...,∞} according to the open-loop concept. The Lagrangian L

with multiplier λt ∈ R+
0 of the maximization problem is defined as:

L =
kV Eγ

i,t + (1− k)V Eγ
j,t

Eγ
i,t + Eγ

j,t

− C(ei,t) + βv(Ei,t) + λt[(1− δ)Ei,t−1 + ei,t − Ei,t].

Maximazing  L with respect to Ei,t, eit and λt yields the following first-order conditions:

C ′(ei,t) = λt,

kV γEγ−1
i,t Eγ

j,t − (1− k)V γEγ−1
i,t Eγ

j,t(
Eγ
i,t + Eγ

j,t

)2 + β
∂v(Ei,t)

∂Ei,t
= λt,

(1− δ)Ei,t−1 + ei,t = Ei,t.

Using the first-order conditions and the envelope theorem
∂v(Ei,t−1)

∂Ei,t−1
= λt(1−δ) , we obtain

the following Euler equation for contestant i:

(2k − 1)V γEγ−1
i,t Eγ

j,t

(Eγ
i,t + Eγ

j,t)
2

= C ′(ei,t)− β(1− δ)C ′(ei,t+1).

2. Steady state:

We derive the following results:

(i) It is easy to show by a proof of contradiction that Ei = Ej ≡ E in the steady state

independently of initial asset stocks, if contestants have a strictly convex cost function.

Furthermore, we obtain ei = ej because ei = δEi and ej = δEj.

(ii) Moreover, we find that a second prize has no effect on the balance of the contest

in the long run. Note that Ei = Ej holds independent of k. Hence,

Eγ
i

Eγ
i + Eγ

j

= pi(Ei, Ej) =
1

2
= pj(Ei, Ej) =

Eγ
j

Eγ
i + Eγ

j

,
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which implies that the prize spread has no effect on the balance of the contest in

the long run. Using the Euler equation and Ei = Ej, we conclude that (2k−1)γV
4E

=

[1− β(1− δ)]C ′(δE) implicitly defines E and therefore also e = δE.

3. Comparative statics:

To prove the comparative statics results, we use the implicit function theorem and

obtain
∂E

∂k
= −

V γ
2E

−(2k − 1)V γ
4E2 − (1− β(1− δ))C ′′(δE)δ

> 0,

and
∂e

∂k
= −

V δγ
2e

−(2k − 1)V δγ
4e2
− (1− β(1− δ))C ′′(e)

> 0.

Therefore, the steady state value E and e is increasing in k. Analogously, it is easy to

show that ∂E/∂β > 0, ∂e/∂β > 0 and ∂E/∂δ < 0, ∂e/∂δ > 0.

A.2 Proof of Lemma 1

To investigate whether |µ1| < 1, |µ2| < 1, |µ3| > 1 and |µ4| > 1 actually emerge as such,

we compute the Eigenvalues of Q, based on the characteristics of the matrix Q, as follows:

µ1,2 =

γV (2k−1)+4E2(1+β(1−δ)2)C′′(e)
4E2β(1−δ)C′′(e) −

√(
γV (2k−1)+4E2(1+β(1−δ)2)C′′(e)

4E2β(1−δ)C′′(e)

)2

− 4
β

2

=

δ(1−β(1−δ))
β(1−δ)σ(e)

+ 1+β(1−δ)2
β(1−δ) −

√(
δ(1−β(1−δ))
β(1−δ)σ(e)

+ 1+β(1−δ)2
β(1−δ)

)2

− 4
β

2

µ3,4 =

γV (2k−1)+4E2(1+β(1−δ)2)C′′(e)
4E2β(1−δ)C′′(e) +

√(
γV (2k−1)+4E2(1+β(1−δ)2)C′′(e)

4E2β(1−δ)C′′(e)

)2

− 4
β

2

=

δ(1−β(1−δ))
β(1−δ)σ(e)

+ 1+β(1−δ)2
β(1−δ) +

√(
δ(1−β(1−δ))
β(1−δ)σ(e)

+ 1+β(1−δ)2
β(1−δ)

)2

− 4
β

2

Hence, we conclude that there are just two different Eigenvalues µ1 = µ2 and µ3 = µ4.

The sum and the product of the two Eigenvalues are as follows:

µ1 + µ3 = µ2 + µ4 =
γV (2k − 1) + 4E2(1 + β(1− δ)2)C ′′(e)

4E2β(1− δ)C ′′(e)

=
δ(1− β(1− δ))
β(1− δ)σ(e)

+
1 + β(1− δ)2

β(1− δ)
(9)

µ1 · µ3 = µ2 · µ4 =
1

β
(10)
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It is easy to see that µ1 + µ2 > 0 and µ1 · µ2 > 0. Hence, equation (9) together with

equation (10) imply that µ1 and µ3 are both positive roots. We use this intermediate

result further below. Figure 3 graphically illustrates equations (9) and (10).

Figure 3: Stable and Unstable Roots

µ1·µ3 
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µ3 

1 g 

45° 
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!

In system (7), there are two predetermined variable (Ei,t, Ej,t) and two non-predetermined

variables (ei,t, ej,t). Blanchard and Kahn (1980) have shown that if the number of non-

predetermined variables equals the number of roots outside the unit circle, then there

exists a unique solution. Next, we provide a proof that there is indeed a unique so-

lution in system (7). Without loss of generality, we assume that µ3 > µ1. Sup-

pose that µ1 = 1. It follows from equation (10) that µ3 = 1/β > 1. Furthermore,

µ1 + µ3 = (1 + β) /β. However, we also know from equation (9) that µ1 + µ3 =

δ(1−β(1−δ))/(σ(e)β(1−δ))+(1 + β(1− δ)2) /(β(1−δ)). Hence, we suggest by inspect-

ing Figure 3 that µ1 < 1 (and therefore µ3 > 1) if and only if the following condition is

satisfied:13

1 + β

β
<
δ(1− β(1− δ))
σβ(1− δ)

+
1 + β(1− δ)2

β(1− δ)
⇐⇒ 1 > −σ (11)

Initially, we have assumed a strictly convex cost function that implies that the inequality

condition (11) is always fulfilled. Therefore, we have two stable roots (µ1 = µ2) and two

unstable roots (µ3 = µ4) such that there is indeed a unique solution. In addition, we

have shown that uniqueness is assured for a set of concave cost functions as long as the

13Note that the curve µ1µ3 converges to the axes. Therefore, the upper intersection of the two curves
lies to the left side of µ1 = 1 such that (1− g) > 0 with g < 1.
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function is not ”too” concave, i.e., such that 1 > −σ is still satisfied. This completes the

proof.

A.3 Proof of Proposition 1

We transform the second-order difference equation (8) into the following form using new

variables u, v and w.

0 = [(1− uL)(1− vL−1)w]Êi,t+1

0 = [w − uwL− vwL−1 + uvw]Êi,t+1 (12)

Comparing equation (8) with equation (12) by using the method of undetermined coeffi-

cients yields three restrictions for u, v and w:

(i) w + uvw = −(a+ f), (ii) − uw = (af − bm), (iii) − vw = 1

The combination of (i), (ii) and (iii) allows us to write:

(bm− af)

u
− u = −(a+ f)

(bm− af)− u2 = −(a+ f)u

u2 − (a+ f)u+ (af − bm) = 0

We conclude that there are two solutions for u:

u1,2 =

δ(1−β(1−δ))
β(1−δ)σ(e)

+ 1+β(1−δ)2
β(1−δ) ±

√
( δ(1−β(1−δ))
β(1−δ)σ(e)

+ 1+β(1−δ)2
β(1−δ) )2 − 4

β

2

It is easy to see that u1,2 equals µ1,3 or µ2,4. Henceforth, we interchangeably use both

notations. Note that µ1 corresponds to the stable solution. Therefore, u1 is also a stable

root. Using the last equation and rewriting equation (12), we obtain:

0 = [(1− u1L)(1− vL−1)w]Êi,t+1

⇐⇒ [(1− u1L)(1− vL−1)w]Ei,t+1 = [(1− u1L)(1− vL−1)w]E

⇐⇒ (Ei,t+1 − E)− u1(Ei,t − E) = v(Ei,t+2 − E)− vu1(Ei,t+1 − E) (13)

Next, we utilize the method of undetermined coefficients again. Suppose that the func-

tional form of the solution looks like Ei,t+1 − E = ζ(Ei,t − E). This is the guess. Now,
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we substitute this guess in equation (13) to determine the coefficient ζ:

(Ei,t+1 − E)− u1(Ei,t − E) = v(Ei,t+2 − E)− vu1(Ei,t+1 − E)

ζ − u1 = vζ(ζ − u1).

As long as vζ 6= 0, we obtain the restriction ζ = u1 for the last equation. Hence, we

conclude that

Ei,t+1 − E = ζ(Ei,t − E) = u1(Ei,t − E).

Next, we replace u1 with µ1 such that Ei,t+1 − E = µ1(Ei,t − E). Recursively, we find

that: Ei,t−E = µt+1
1 (Ei,−1−E). We notice that the dynamics of the asset stock crucially

depend on the stable Eigenvalue µs ≡ µ1 with µ1 < 1.14 A high value of µs implies that

the asset stock slowly converges to the steady state and vice versa. Next, we consider

the optimal policy function et. From the linearization around the steady state, we know

that

Êi,t+1 = (1− δ)Êi,t + δêi,t+1

⇐⇒ Ei,t+1 − E = (1− δ) (Ei,t − E) + (ei,t+1 − e)

Earlier, we have computed that Ei,t+1 −E = µs(Ei,t −E). Using the last two equations,

we obtain:

µs(Ei,t − E) = (1− δ) (Ei,t − E) + (ei,t+1 − e)

⇐⇒ ei,t+1 = e+ (µs + δ − 1)µt+1
s (Ei,−1 − E)

⇐⇒ ei,t = e+ (µs + δ − 1)(Ei,−1 − E)µts

Using symmetry, we obtain the following dynamics for efforts and asset stocks after

linearizing the model around the steady state:

ei,t = e+ (µs + δ − 1)(Ei,−1 − E)µts

ej,t = e+ (µs + δ − 1)(Ej,−1 − E)µts

Ei,t = E + (Ei,−1 − E)µt+1
s

Ej,t = E + (Ej,−1 − E)µt+1
s

with i, j ∈ {1, 2} and j 6= i. The last four equations exactly represent Proposition 1.

This completes the proof.

14Note that µs > 0, as shown in the proof of Lemma 1.
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