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Abstract

In this paper, we discuss a manager�s allocation problem. Two man-
agers allocate their heterogeneous employees - each manager allocates two
high types and two low types - in groups of two in order to compete for an
exogenous contest prize in a two period model. There are three possibil-
ities of groups�constellation depending on manager�s allocation decision:
Strong groups (two high types), balanced groups (one high and one low
type) and weak groups (two low types). These allocations determine the
managers�performance. We show that equilibria in a simultaneous as well
as in a sequential game only depend on the di¤erence of the heterogeneous
groups� outputs. Furthermore, we show that there is no second mover
advantage according this model. Therefore, �rms�performances are inde-
pendent of the model�s timing. A typical application of the model �ts to
coaches�decisions in ice hockey concerning the optimal constellation of the
�rst, second, third (and so forth) lines.
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1 Introduction

In contest models, agents invest in order to possibly obtain a contest prize. Dixit
(1987), for example, states:

"Many economic and social games are contests where the players
expend e¤ort to increase their probability of winning a given prize.
Examples include: (i) inter-�rm or international R&D rivalry for a
pro�table innovation; (ii) bribery to secure a lucrative license or con-
tract from a government; and (iii) the Wimbledon �nal or the Super-
bowl. Economists have studied such games in many contexts." (p.
891)

As we can see in Dixit�s statement, contest theory has been applied to a wide
range of economic problems. Loury (1979), for instance, formulates a model in
which �rms invest into R&D under technological and market uncertainty in order
to produce a new good. In this economy the �rst �rm succeeding in the innova-
tion process will be rewarded by a patent protection. Nevertheless, �rms�chances
of success depend on each other. Loury shows that a higher rivalry, i.e. more
�rms in the market, reduces �rms�investments in equilibrium. Therefore, it takes
a longer time until the innovation has been arrived. Dasgupta and Stiglitz (1980)
and Mortensen (1982) provide similar R&D rivalry models. All of these models
have important implications for the regulatory policy aimed at the improvement
of social welfare in the corresponding industries because the theoretical under-
standing of innovation and market processes is very critical and may help to avoid
regulatory mistakes.
Lazear and Rosen (1981) examine optimal payment schemes based on the rank

order in a tournament. Employees are not paid based on just their individual
e¤orts. Own e¤orts and a random component together determine the individual
output. This individual output is then used for a ranking of the employee�s
performance. Firms o¤er di¤erent prizes for the di¤erent ranking positions.1

Lazear and Rosen are able to show that a payment according to the rank position
can result in an e¢ cient behaviour of employees in case of risk neutral employees.
They extend their model and allow for heterogenous and risk-averse workers.
Then, it is possible that the e¢ cient solution collapses.2

El-Hodiri and Quirk (1971) provide a dynamic n-team sports model in order
to analyze whether the structure of the professional sports industry legitimates

1The idea behind this modelling is that it might be interesting for �rms to o¤er a payment
scheme not based on individual e¤ort since individual e¤ort is often di¢ cult or costly to observe.
In some industries, workers�relative output might be easier to determine.

2In case of asymmetric information, low quality workers may enter into �rms consisting of
high quality workers such that the e¢ cient solution collapses.
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an exemption of some antitrust bills. Clubs invest into human capital in each
period in order to maximize expected discounted pro�ts. The time horizon is
in�nite. Moreover, the model incorporates certain fundamental features of the
North American sports industry such as the reserve clause, player drafts, the sale
of player contracts among teams and gate revenue sharing. Gate revenue sharing
indicates the split of gate revenues between the home team and the away team.
Furthermore, El-Hodiri and Quirk assume a �xed supply of talents since in their
model the total number of talents is exogenously given. In order to ensure that
the model possesses a solution, El-Hodiri and Quirk assume that net sales of
contracts by each team are zero. Then, El-Hodiri and Quirk are able to conclude
that pro�t maximization by each team is generally not consistent with a time
path of equal playing strengths for all teams. However, a time path with equal
playing strength is feasible in case of equal revenue functions as long as the gate
revenue sharing parameter exceeds 0.5.3 El-Hodiri and Quirk provide a simple
rule guaranteeing the convergence of team�s playing strength even if the revenue
functions di¤er among teams:

"Assume that the supply of new playing skills is constant over
time. If sales of player contracts for cash are forbidden, then, given
any distribution of initial stocks of playing skills among teams, time
paths of stocks of playing skills converge to one of equal playing
strengths for all teams." (p. 1314)

Under this rule they are able to show that the speed of convergence of teams�
playing strengths is higher the larger the depreciation rate of playing strength is.
Due to this result, El-Hodiri and Quirk expect that the speed of convergence is
higher in football than in baseball because careers usually last longer in baseball
than in football.
In contest models, agents decide how much to invest in each period in order to

maximize expected pro�ts. However, one could also ask: Given agents�speci�c
investments, what is the agent�s optimal allocation of the resulting resources?
The main goal of this paper is to provide an answer to this question.
In many sports disciplines, there are periods in which it is prohibited to buy or

sell players (e.g. soccer, icehockey). Then, coaches have to decide how to allocate
optimally the available resources. They speci�cally determine how to form their
teams against each competitor. We often observe that coaches substitute players,
change the team constellation or even change their tactics during a single game.
One of the fundamental characteristics in team sports is the heterogeneity of

player�s strength. We rarely observe teams in which all players are equally strong.

3A gate revenue sharing parameter of 0:7, for instance, indicates that the home team receives
70 percent and the away team 30 percent of gate revenues.
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However, there are often better players but also weaker players in a team. This
heterogeneity may have an impact on the "optimal" tactics for coaches. For
instance, a coach of an icehockey team considers whether to form a relatively
strong �rst line or rather to balance the �rst, second, third, ..., lines. Furthermore,
this decision may not be independent of the opponent�s team constellation. In
icehockey, there is another important feature which should be kept in mind: The
home team has the possibility to react on the away team�s decision because the
away team has to enter the ice �rst after each break during a match.
Therefore, it is interesting to analyze the determinants of optimal team con-

stellation in order to provide answers for coaches�optimal tactical behaviour. We
provide a model in which there are two types of agents representing the hetero-
geneity of players. Typically, icehockey teams consist of more than two lines and
there are �ve players in each line. However, we simplify matters by considering
just two lines each consisting of two players. Although a match normally takes
sixty minutes and lines substitute each other after approximately one minute, we
simplify matters and just analyze a two period model.
The above-mentioned icehockey example may be generalized. We claim that

there are analogous decision problems in the private industry: Suppose that
managers have to form two teams each consisting of two employees. Each team
produces one product such that each �rm produces two di¤erent products.4 De-
pending on the team formation, the employees together produce superior, moder-
ate or poor outputs. Finally, �rm�s resulting outputs compete with the outputs of
the other �rm on markets. Therefore, we henceforth use a more general notation.
We call the agents of the model "employees" and "manager" of �rms.
The paper has the following structure: In section 2, we present the assumptions

and possible strategies for managers. Then, we determine Nash equilibria in case
of simultaneous decisions of managers in section 3.1. In section 3.2, we consider
subgame perfect equilibria in case of a sequential game. Finally, we present the
conclusions in section 4. In the appendix, we extend the model by relaxing the
assumption of two di¤erent types. Instead, we allow for four di¤erent types in
�rms. Furthermore, we use a di¤erent measurement of the winning probabilities
in order to detect the e¤ects of each speci�cation.

4Note that the two products in this example correspond with the two periods in the icehockey
example.
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2 Model

2.1 Assumptions

Two �rms compete for an exogenous prize. Each �rm consists of four employees
and one manager. The employees di¤er with respect to their productivity. On the
one hand there is a high productive type called A and on the other hand there is a
low productive type called B. Each �rm consists of two A types and two B types.
Hence, four employees are engaged within each �rm. There are two periods. We
assume that a speci�c employee is working just in one period. Afterwards, he is
exhausted. Furthermore, we suppose that employees are working in a two-party
group. The �rm�s manager decides in which constellation the employees work.
For instance, he is able to assort the two high productive types A to a group
which we denote by AA and the two low productive types B to a group which we
denote by BB. Otherwise, the manager has the possibility to mix the high and
low types to a group which we denote by AB (or equivalently BA). There are no
costs in order to assemble the groups. For reasons of simplicity, we assume that
the output of group AA is X, the output of group AB is Y , and the output of
group BB is Z > 0. We suppose that group AA is more productive than group
AB (or BA) such that X > Y . Moreover, group AB is more productive than
group BB such that Y > Z. The timing of the model is as follows: The managers
simultaneously or sequentially decide how to allocate the employees over the two
periods.5 Firm one wins the exogenous prize with probability p1(�) which consists
of two components incorporating the two periods:

p1(s11; s12; s21; s22) =
1

2

es11

es11 + es21
+
1

2

es12

es12 + es22

where sij indicates the group output of �rm i in period j for i = 1; 2 and j = 1; 2.
For instance, s12 = X means that �rm one plays AA in period two. Analogously,
�rm two has the following winning probability p2(�):

p2(s21; s22; s11; s12) =
1

2

es21

es21 + es11
+
1

2

es22

es22 + es12

Note that this logistic contest success function is standard in contest models (cf.
Hirshleifer (1989)). The special characteristic of the contest success function is
the splitting into two periods each weighted by 0.5.
We assume that each manager tries to maximize expected pro�ts. Since the

prize is exogenous and there are no costs, managers maximize their winning
probabilities.

5Otherwise, we can modify the assumption as follows: Both managers simultaneously or
sequentially choose the employees for the �rst period. Obviously, the remaining employees are
deployed automatically in the second period.
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2.2 Strategies

Manager one has the following three possible strategies:

� Strategy (i): If he plays AA in the �rst period and BB in the second, then
his winning probability is

p1(X;Z; s21; s22) =
1

2

eX

eX + es21
+
1

2

eZ

eZ + es22
:

� Strategy (ii): If he plays BB in the �rst period and AA in the second, then
his winning probability is

p1(Z;X; s21; s22) =
1

2

eZ

eZ + es21
+
1

2

eX

eX + es22
:

� Strategy (iii): If he plays AB (or BA) in the �rst period and AB (or BA)
in the second, then his winning probability is

p1(Y; Y ; s21; s22) =
1

2

eY

eY + es21
+
1

2

eY

eY + es22
:

Manager two has the following three possible strategies:

� Strategy (iv): If he plays AA in the �rst period and BB in the second, then
his winning probability is

p2(X;Z; s11; s12) =
1

2

eX

eX + es11
+
1

2

eZ

eZ + es12
:

� Strategy (v): If he plays BB in the �rst period and AA in the second, then
his winning probability is

p2(Z;X; s11; s12) =
1

2

eZ

eZ + es11
+
1

2

eX

eX + es12
:

� Strategy (vi): If he plays AB (or BA) in the �rst period and AB (or BA)
in the second, then his winning probability is

p2(Y; Y ; s11; s12) =
1

2

eY

eY + es11
+
1

2

eY

eY + es12
:

A strategy combination is de�ned according to the following example: If
manager one plays strategy (ii) and manager two plays strategy (vi), then the
strategy combination is de�ned by (ii; vi).
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3 Equilibrium

3.1 Simultaneous Game

In this section, we consider simultaneous decisions of managers. Thus, each man-
ager determines the team constellation without knowing the rival�s behaviour.
Even if there are two periods, we do not have to use a dynamic game approach
since decisions in period one determine the behaviour in period two. Therefore,
the game is static with respect to decisions and we are able to use Nash strate-
gies to determine the manager�s rational behaviour. Using this procedure, we get
proposition 1:

Proposition 1 If X�Y > Y �Z then strategy combinations (i; iv); (i; v); (ii; iv)
and (ii; v) constitute Nash equilibria. If X�Y < Y �Z then the strategy combina-
tion (iii; vi) constitutes a Nash equilibrium. In case of X�Y = Y �Z all strategy
combinations are Nash equilibria. Independent of the parameter conditions, the
winning probabilities equal 0:5 for each �rm.

Proof. The �rst part of the proof for proposition 1 is as follows: Suppose that
manager one plays strategy (i) and manager two plays strategy (iv). It follows
that both �rms win the contest with probability 0:5 because

p1(X;Z;X;Z) = p2(X;Z;X;Z) =
1

2

eX

eX + eX
+
1

2

eZ

eZ + eZ
=
1

2
:

Do they have incentives to deviate? Suppose that manager one assumes that
manager two plays the Nash-strategy (iv). Manager one has the possibilities to
deviate by playing either strategies (ii) or (iii). Manager one has no incentive to
deviate to strategy (ii) if and only if

1

2
> 1

2

eZ

eZ + eX
+
1

2

eX

eX + eZ

() 1 > eZ

eZ + eX
+

eX

eX + eZ

() 1 > 1

This condition is always satis�ed. Thus, there is no incentive for manager one
to deviate to strategy (ii). But, does manager one has incentives to deviate to

7



strategy (iii)? There is no incentive if and only if

1

2
> 1

2

eY

eY + eX
+
1

2

eY

eY + eZ

() 1 > eY (eY + eZ) + eY (eY + eX)

(eY + eX)(eY + eZ)

() 1 > e2Y + eY+Z + e2Y + eX+Y

e2Y + eY+Z + eX+Y + eX+Z

() eX+Z > e2Y

() X + Z > 2Y
() X � Y > Y � Z

Note that manager two has similar incentives to deviate as manager one. There-
fore, we have shown that the strategy combination (i; iv) constitutes a Nash
equilibrium if X � Y > Y � Z. It is easy to see that the strategy combinations
(i; v); (ii; iv) and (ii; v) are Nash equilibria, too, since both managers are indif-
ferent between choosing strategy AA followed by BB or BB followed by AA as
long as X�Y > Y �Z.6 Next, we proof the second part of proposition 1: Under
which condition is the strategy combination (iii; vi) a Nash equilibrium? In this
case, both managers have a winning probability of 0:5. Suppose that manager
two plays strategy (vi). Does manager one has an incentive to deviate by playing
strategy (i) or (ii)? There is no incentive to choose strategy (i) or (ii) if and only
if

1

2
> 1

2

eX

eX + eY
+
1

2

eZ

eZ + eY

() 1 > eX

eX + eY
+

eZ

eZ + eY

() 1 > eX(eZ + eY ) + eZ(eX + eY )

(eX + eY )(eZ + eY )

() 1 > eX+Z + eY+X + eX+Z + eY+Z

eX+Z + eX+Y + eY+Z + e2Y

() e2Y > eX+Z

() 2Y > X + Z
() Y � Z > X � Y

Note that manager two has similar incentives for deviation as manager one. Thus,
the strategy combination (iii; vi) constitutes a Nash equilibrium if Y � Z >

6It directly follows that the aforementioned strategy combinations determine Nash equilibria
if X � Y > Y � Z.
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X�Y .7 In case of Y �Z = X�Y , it directly follows from the previous proof that
strategy combinations (i; iv); (i; v); (ii; iv) (ii; v) and (iii; vi) are Nash-equilibria.
Furthermore, we next show that strategy combinations (i; vi); (ii; vi); (iii; iv) and
(iii; v) represent Nash equilibria if Y � Z = X � Y such that all strategy com-
binations are possible. Obviously, we have to analyze just one combination of
(i; vi); (ii; vi); (iii; iv) and (iii; v) since incentives are symmetrical. The strategy
combination (i; vi) is a Nash equilibrium in case of Y � Z = X � Y since

p1(X;Z;Y; Y ) =
1

2

eX

eX + eY
+
1

2

eZ

eZ + eY

=
1

2

eZ

eZ + eY
+
1

2

eX

eX + eY
= p1(Z;X;Y; Y )| {z }

(deviation of manager one)

=
1

2

eY

eY + eY
+
1

2

eY

eY + eY
= p1(Y; Y ;Y; Y )| {z }

(deviation of manager one)

=
1

2

p2(Y; Y ;X;Z) =
1

2

eY

eY + eX
+
1

2

eY

eY + eZ

=
1

2

eZ

eZ + eX
+
1

2

eX

eX + eZ
= p2(Z;X;X;Z)| {z }

(deviation of manager two)

=
1

2

eX

eX + eX
+
1

2

eZ

eZ + eZ
= p2(X;Z;X;Z)| {z }

(deviation of manager two)

=
1

2
:

According to the above arguments, we get proposition 1.

It is interesting to see that only the di¤erence between X � Y and Y � Z is
decisive for the equilibrium. The intuition for this result is as follows: Managers
would deviate from equilibrium if the advantage of one period is higher than
the disadvantage of the other period. Suppose that X � Y > Y � Z and the
equilibrium strategy combinations is (i; iv). Manager one assumes that manager
two plays strategy (iv). Then, manager one has no incentive to deviate from
strategy (i) to (ii) since marginal bene�ts in one period is exactly compensated
by marginal losses in the other period. Furthermore, manager one does not

7It directly follows that the strategy combination (iii; vi) constitutes a Nash equilibrium if
Y � Z > X � Y .
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deviate to strategy (iii) because marginal losses (which depend on X�Y ) would
be at least as high as marginal bene�ts (which depend on Y � Z) due to the
fact that X � Y > Y � Z. On the other hand, a strategy combination (iii; vi)
constitutes a Nash equilibrium if X � Y 6 Y � Z. No manager has incentives
to deviate to another strategy since marginal bene�ts (which depend on X � Y )
are equal or smaller than marginal losses (which depend on Y � Z) due to the
fact that X � Y 6 Y � Z.

3.2 Sequential Game

In the last section we have considered managers�optimal allocation in case of
simultaneous choices. However, a sequential choice may be appropriate regarding
icehockey since the home team has the possibility to react on the opponent�s
choice. Therefore, we solve the model taking into account that one manager moves
�rst and the other manager reacts. Now, the game is dynamic and backward
induction is adequate in order to solve the model. We assume that manager
two moves �rst, and manager one reacts. Manager two anticipates manager
one�s optimal behaviour and adjusts its decision. We guess that manager one�s
situation is at least as good as in the simultaneous game since he can react on
manager two�s decision and could always imitate manager two�s decision. We get
the following proposition using backward induction:

Proposition 2 If manager two moves �rst, then manager one has no second
mover advantage. The winning probability equals 0.5 for both managers in a sub-
game perfect equilibrium. If Y � Z > X � Y , then manager two optimally plays
strategy (vi), manager one�s optimal answer is strategy (iii). Thus, the strategy
combination (iii; vi) constitutes a subgame perfect Nash equilibrium. If Y � Z <
X�Y , then manager two optimally plays strategy (iv) or (v), manager one�s opti-
mal answer is strategy (i) or (ii). Thus, strategy combinations (i; iv); (i; v); (ii; iv)
and (ii; v) constitute subgame perfect Nash equilibria. If Y � Z = X � Y , then
all strategy combinations constitute a subgame perfect Nash equilibrium.

Proof. What is manager one�s optimal reaction to a given action of manager
two? Suppose manager two plays (AA;BB) or (BB;AA). If manager one�s
answer is (AA;BB) or (BB;AA), then both managers�winning probability is
equal to 0:5. If manager one�s answer is (AB;AB), then manager one�s winning
probability is

p1(Y; Y ;X;Z) =
1

2

eY

eY + eX
+
1

2

eY

eY + eZ

=
1

2

e2Y + eY+Z + e2Y + eY+X

e2Y + eY+Z + eX+Y + eX+Z
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Thus, manager one plays (AB;AB) if

e2Y > eX+Z

() 2Y > X + Z

() Y � Z > X � Y

such that p1(Y; Y ;X;Z) > 0:5 and therefore p2(X;Z;Y; Y ) < 0:5. If Y � Z <
X � Y , then manager one�s optimal answer is (AA;BB) or (BB;AA) such that
p1(�) = p2(�). In case of Y � Z = X � Y , manager one is indi¤erent between his
strategies. Otherwise, suppose that manager two plays (AB;AB). If manager
one�s answer is (AB;AB), then both managers have an equal winning probability
of 0:5. If manager one plays (AA;BB) or (BB;AA), then manager one�s winning
probability is

p1(X;Z;Y; Y ) =
1

2

eX

eX + eY
+
1

2

eZ

eZ + eY

=
1

2

eX+Z + eX+Y + eZ+X + eZ+Y

eX+Z + eX+Y + eY+Z + e2Y

Thus, manager one plays (AA;BB) or (BB;AA) if

eZ+X > e2Y

Z +X > 2Y

X � Y > Y � Z

such that p1(X;Z;Y; Y ) > 0:5 and p2(Y; Y ;X;Z) < 0:5. If X � Y < Y �
Z, then manager one�s optimal answer is (AB;AB) such that p1(�) = p2(�).
In case of Y � Z = X � Y , manager one is indi¤erent between his strategies.
It is obvious that manager one achieves at least a winning probability of 0:5
by simulating manager two�s action in both periods. However, manager one
can possibly do better by choosing a di¤erent strategy. Note that manager two
anticipates manager one�s optimal behaviour. Thus, manager two optimally plays
(AA;BB) or (BB;AA) if Y � Z < X � Y: In this case, manager one�s optimal
answer is (AA;BB) or (BB;AA) such that p1(�) = p2(�). Moreover, manager two
optimally plays (AB;AB) if Y �Z > X�Y: In this case, manager one�s optimal
answer is (AB;AB) such that p1(�) = p2(�). If Y �Z = X � Y , then all strategy
combinations constitute a subgame perfect Nash equilibrium. According to these
arguments, we get proposition 2.

Proposition 2 shows that there is no second mover advantage for manager one
since both managers have identical winning probabilities in equilibrium. Manager
two anticipates manager one�s optimal reaction and adequately adjusts his �rst
move.
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4 Conclusion

In this paper, we discussed a manager�s allocation problem. Two managers allo-
cate their heterogeneous employees - each manager allocates two high types and
two low types - in groups of two in order to compete for an exogenous contest
prize in a two period model. There are three possible group constellations within
each �rm depending on the manager�s allocation decision: Strong groups (two
high types), balanced groups (one high and one low type) and weak groups (two
low types). The allocation determines the manager�s winning probability. We
show that equilibria in a simultaneous as well as in a sequential game depend
on the di¤erence of the groups� outputs. If the di¤erence between the strong
group�s and balanced group�s output is higher than the di¤erence between the
balanced group�s and weak group�s output, then each group is composed of iden-
tical types independent of the model�s timing (i.e. simultaneous or sequential
game). Otherwise, groups consist of di¤erent types, if the di¤erence between the
strong group�s and balanced group�s output is smaller than the di¤erence between
the balanced group�s and weak group�s output independent of the model�s timing.
Furthermore, we show that there is no second mover advantage according to this
model. Therefore, the �rms�winning probability is independent of the model�s
timing. Applying this result on coaches�optimal line constellation in icehockey,
there is theoretically no home game advantage under the assumption that the
heterogeneity is identical in both competing teams. Even if the home team can
react on the opponent�s decision, there is no advantage in equilibrium. Of course,
a team may reap the bene�ts of a home match because the fans typically cheer
more for the home team.
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5 Appendix

In this appendix, we relax the assumption of two di¤erent types. We allow for
four di¤erent types in order to generalize the model. Furthermore, we use a
di¤erent measurement of the winning probability in order to detect the e¤ects of
each speci�cation.

5.1 Notation

Manager one has two (high)A-types and two (low)B-types. Manager two has two
(high) C-types and two (low) D-types. AA means that manager one combines
the two types A together as an input. The resulting output is denoted by a.
Table 1 summarizes the notation.

Input �! Output
AA �! a
BB �! b
AB �! �
CC �! c
DD �! d
CD �! 


Table 1: Notation

Henceforth, (AA;BB) means that manager one plays AA in t = 1 and BB in
t = 2. (CD;CD) means that manager two plays CD in t = 1 and CD in t = 2,
and so forth.

5.2 Assumptions

We use the following assumptions regarding output:

a > � > b > 0
c > 
 > d > 0

Thus, a combination of the high types AA (CC) results in higher output
than a composition of the di¤erent types AB (CD): Therefore, a > � (c > 
).
Furthermore, a composition AB (CD) yields a higher output than a combination
of two low types BB (DD) such that � > b (
 > d). Moreover, we simply
assume that a T c; � T 
, b T d comparing manager one�s with manager two�s
output. Di¤erent to the last section, we use the logit contest success function in
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order to model the competition.8 Hence, �rm one wins the exogenous prize with
probability p1(�) which consists of two components incorporating the two periods:

p1(s11; s12; s21; s22) =
1

2

s11
s11 + s21

+
1

2

s12
s12 + s22

where sij indicates the group output of �rm i in period j for i = 1; 2 and j = 1; 2.
For instance, s12 = b means that �rm one plays BB in period two. Analogously,
�rm two has the following winning probability p2(�):

p2(s21; s22; s11; s12) =
1

2

s21
s21 + s11

+
1

2

s22
s22 + s12

We will identify and point out the similarities to the logistic contest success
function later.

5.3 Strategies

Manager one has the following three possible strategies:

� Strategy (i): If he plays AA in the �rst period and BB in the second, then
his winning probability is

p1(a; b; s21; s22) =
1

2

a

a+ s21
+
1

2

b

b+ s22
:

� Strategy (ii): If he plays BB in the �rst period and AA in the second, then
his winning probability is

p1(b; a; s21; s22) =
1

2

b

b+ s21
+
1

2

a

a+ s22
:

� Strategy (iii): If he plays AB (or BA) in the �rst period and AB (or BA)
in the second, then his winning probability is

p1(�; �; s21; s22) =
1

2

�

�+ s21
+
1

2

�

�+ s22
:

Manager two has the following three possible strategies:

� Strategy (iv): If he plays CC in the �rst period and DD in the second,
then his winning probability is

p2(c; d; s11; s12) =
1

2

c

c+ s11
+
1

2

d

d+ s12
:

8Note that this function was introduced by Tullock (1980).
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� Strategy (v): If he plays DD in the �rst period and CC in the second, then
his winning probability is

p2(d; c; s11; s12) =
1

2

d

d+ s11
+
1

2

c

c+ s12
:

� Strategy (vi): If he plays CD (or DC) in the �rst period and CD (or DC)
in the second, then his winning probability is

p2(
; 
; s11; s12) =
1

2





 + s11
+
1

2





 + s12
:

A strategy combination is de�ned as follows: If manager one plays strategy
(ii) and manager two plays strategy (vi), then the strategy combination is de�ned
by (ii; vi).
A strategy combination is called homogeneous if the di¤erent types are not

mixed within a group. Therefore, strategy combinations consisting of AA, BB,
CC and DD are called homogeneous strategy combinations. However, the strat-
egy combination (iii; vi) is heterogeneous. We call a strategy combination semi-
heterogeneous if one manager plays a homogeneous and the other a heterogeneous
strategy.

5.4 Simultaneous Equilibrium

In the next sections, we consider simultaneous equilibria. Thus, both manager
simultaneously determine the allocation of their types. First, we analyze homo-
geneous strategy combinations. Afterwards, we consider heterogeneous and then
semi-heterogeneous strategy combinations.

5.4.1 Homogeneous Strategy Combinations

Under which conditions constitute (AA;BB) and (CC;DD) a Nash equilibrium?
Manager one has no incentives to deviate if the following two inequalities are
ful�lled:

1

2

a

a+ c
+
1

2

b

b+ d
> 1

2

�

�+ c
+
1

2

�

�+ d
()

a

a+ c
+

b

b+ d
> �

�+ c
+

�

�+ d

1

2

a

a+ c
+
1

2

b

b+ d
> 1

2

b

b+ c
+
1

2

a

a+ d
()

ab > cd
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Manager two has no incentives to deviate if the following two inequalities are
ful�lled:

1

2

c

c+ a
+
1

2

d

d+ b
> 1

2





 + a
+
1

2





 + b
()

c

c+ a
+

d

d+ b
> 



 + a
+





 + b

1

2

c

c+ a
+
1

2

d

d+ b
> 1

2

d

d+ a
+
1

2

c

c+ b
()

cd > ab

These four inequalities can be summarized by the following three inequalities:

a

a+ c
+

b

b+ d
> �

�+ c
+

�

�+ d
(1)

c

c+ a
+

d

d+ b
> 



 + a
+





 + b
(2)

ab = cd (3)

Combining equation (1) with (3) we get

cd > �2 (4)

Combining equation (2) with (3) we get

ab > 
2 (5)

Combining equations (3), (4) and (5) we need

ab = cd > maxf�2; 
2g (6)

for (AA;BB) and (CC;DD) to de�ne Nash strategies. Note that the condition
ab = cd has to be ful�lled in order to satisfy that no manager has incentives
to play the inverse strategy (BB;AA) or (DD;CC), respectively. The opportu-
nity to play strategies (AB;AB) or (CD;CD) are not attractive as long as �2

and 
2 are smaller than ab. It is easy to see that under condition (6) there are
other possible equilibria: (AA;BB) and (DD;CC); (BB;AA) and (CC;DD);
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(BB;AA) and (DD;CC). We brie�y show that (AA;BB) and (DD;CC) con-
stitute a Nash equilibrium under condition (6).9 Manager one does not deviate
from this equilibrium strategy to either (AB;AB) or (BB;AA) if

1

2

a

a+ d
+
1

2

b

b+ c
> 1

2

�

�+ d
+
1

2

�

�+ c

() a

a+ d
+

b

b+ c
> �

�+ d
+

�

�+ c
(7)

and

1

2

a

a+ d
+
1

2

b

b+ c
> 1

2

b

b+ d
+
1

2

a

a+ c
() cd > ab: (8)

Manager two does not deviate from equilibrium strategy to either (CD;CD) or
(CC;DD) i¤

1

2

d

d+ a
+
1

2

c

c+ b
> 1

2





 + a
+
1

2





 + b
(9)

() d

d+ a
+

c

c+ b
> 



 + a
+





 + b

and

1

2

d

d+ a
+
1

2

c

c+ b
> 1

2

c

c+ a
+
1

2

d

d+ b
(10)

() ab > cd:

Combining equations (7),(8),(9) and (10) we are able to reduce the four conditions
to the following condition, once again:

ab = cd > max f�2; 
2g

Thus, we conclude that these equilibria with homogeneous strategies balance
on the knife�s edge condition ab = cd. If ab 6= cd, at least one manager has
incentives to deviate from the corresponding strategy. Table 2 sums up the four
homogeneous equilibria.10

9However, we omit the proofs for the other equilibria since it directly follows by reason of
symmetry.
10Note that the di¤erent lines in the table constitute Nash Equilibria. The condition in the

�rst column must hold in each equilibrium.
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Condition Manager one�s Nash Strategy Manager two�s Nash Strategy
ab = cd > maxf�2; 
2g AA;BB CC;DD

AA;BB DD;CC
BB;AA CC;DD
BB;AA DD;CC

Table 2: Homogeneous Equilibria

In the last section, we used the logistic model and assumed that there exist
just two types. The above solutions with four types coincide to the two type
results, if we assume that ab = cd and � = 
. In case of the logistic model, we
showed that di¤erences were crucial. However, the logit model implicates that
ratios are decisive for equilibria. In order to see this, use ab = cd and � = 

in the homogeneous equilibrium condition ab = cd > maxf�2; 
2g. Then, it is
obvious that this condition reduces to

a

�
> �

b
:

The ratio of the two high type�s output (a) to the output of one low and one
high type (�) has to be larger than the ratio of the output of one low and one
high type (�) to the output of two low types (b). If � is relatively low, then no
manager has incentives to deviate to heterogeneous strategies.

5.4.2 Heterogeneous Strategy Combinations

Now, we analyze heterogeneous strategies. Under which conditions constitute
(AB;AB) and (CD;CD) a Nash equilibrium? Manager one has no incentives to
deviate if the following inequality is ful�lled:

1

2

�

�+ 

+
1

2

�

�+ 

> 1

2

a

a+ 

+
1

2

b

b+ 

()

�

�+ 

> 1

2

a

a+ 

+
1

2

b

b+ 


Manager two has no incentives to deviate if the following inequality is ful�lled:

1

2




�+ 

+
1

2




�+ 

> 1

2

c

c+ �
+
1

2

d

d+ �
()




�+ 

> 1

2

c

c+ �
+
1

2

d

d+ �
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We sum up the results in case of a heterogeneous strategy combination in table
3.11

Conditions Manager one�s Nash Strategy Manager two�s Nash Strategy
�
�+


> 1
2

a
a+


+ 1
2

b
b+


AB;AB CD;CD



+�

> 1
2

c
c+�

+ 1
2

d
d+�

Table 3: Heterogeneous Equilibrium

5.4.3 Semi-Heterogeneous Strategy Combinations

In case of semi-heterogeneous strategy combinations, one manager plays homoge-
neous and the other heterogeneous strategies. The results mainly depend on the
condition ab T cd. We just explain the following example: Equilibrium (AA;BB)
and (CD;CD) with ab = cd :
Manager one does not deviate from equilibrium strategy to either (AB;AB)

or (BB;AA) if

1

2

a

a+ 

+
1

2

b

b+ 

> 1

2

�

�+ 

+
1

2

�

�+ 


() 1

2

a

a+ 

+
1

2

b

b+ 

> �

�+ 

(11)

and

1

2

a

a+ 

+
1

2

b

b+ 

> 1

2

b

b+ 

+
1

2

a

a+ 


() 1 > 1 (12)

Manager two does not deviate from equilibrium strategy to either (CC;DD)
or (DD;CC) if

1

2





 + a
+
1

2





 + b
> 1

2

c

c+ a
+
1

2

d

d+ b

() 



 + a
+





 + b
> c

c+ a
+

d

d+ b
(13)

11Note that the indicated heterogeneous equilibrium exists if both conditions in the �rst
column hold.
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and

1

2





 + a
+
1

2





 + b
> 1

2

d

d+ a
+
1

2

c

c+ b

() 



 + a
+





 + b
> d

d+ a
+

c

c+ b
(14)

Note that inequality (11) must hold, inequality (12) always holds and inequal-
ities (13) and (14) together imply that 
2 > ab = cd. Therefore, (AA;BB) and
(CD;CD) is an equilibrium if 
2 > ab = cd and 1

2
a
a+


+ 1
2

b
b+


> �
�+

.

Tables 4-6 sum up all possible results in case of semi-heterogeneous strategy
combinations:12

Conditions (ab = cd) Manager one Manager two

2 > ab = cd AA;BB CD;CD

1
2

a
a+


+ 1
2

b
b+


> �
�+


BB;AA CD;CD

�2 > cd = ab AB;AB CC;DD
1
2

c
c+�

+ 1
2

d
d+�

> 


+�

AB;AB DD;CC

Table 4: Semi-Heterogeneous Equilibria with ab=cd

Conditions (ab > cd) Manager one Manager two
1
2

a
a+


+ 1
2

b
b+


> �
�+


AA;BB CD;CD



+a

+ 


+b

> c
c+b
+ d

d+a
BB;AA CD;CD

1
2

c
c+�

+ 1
2

d
d+�

> 


+�

AB;AB CC;DD
�
�+c

+ �
�+d

> a
a+c

+ b
b+d

AB;AB DD;CC

Table 5: Semi-Heterogeneous Equilibria with ab>cd

Conditions (ab < cd) Manager one Manager two
1
2

a
a+


+ 1
2

b
b+


> �
�+


AA;BB CD;CD



+a

+ 


+b

> c
c+a

+ d
d+b

BB;AA CD;CD
1
2

c
c+�

+ 1
2

d
d+�

> 


+�

AB;AB CC;DD
�
�+c

+ �
�+d

> b
b+c
+ a

a+d
AB;AB DD;CC

Table 6: Semi-Heterogeneous Equilibria with ab<cd

12We di¤erentiate between the following three cases: ab = cd; ab > cd and ab < cd. Note
that the previous example is represented in the �rst line of table 4.

20



5.4.4 Summary of Equilibria

In table 7-9, we present all equilibria in another version, once again. We simply
distinct the following three cases (i) ab = cd; (ii) ab > cd and (iii) ab < cd and we
do not di¤erentiate between homogeneous, heterogeneous and semi-heterogeneous
equilibria.

Conditions Manager one Manager two
ab = cd > maxf�2; 
2g AA;BB CC;DD

AA;BB DD;CC
BB;AA CC;DD
BB;AA DD;CC


2 > ab = cd AA;BB CD;CD
1
2

a
a+


+ 1
2

b
b+


> �
�+


BB;AA CD;CD

�2 > cd = ab AB;AB CC;DD
1
2

c
c+�

+ 1
2

d
d+�

> 


+�

AB;AB DD;CC
�
�+


> 1
2

a
a+


+ 1
2

b
b+


AB;AB CD;CD



+�

> 1
2

c
c+�

+ 1
2

d
d+�

Table 7: Equilibria with ab=cd

Conditions Manager one Manager two
1
2

a
a+


+ 1
2

b
b+


> �
�+


AA;BB CD;CD



+a

+ 


+b

> c
c+b
+ d

d+a
BB;AA CD;CD

1
2

c
c+�

+ 1
2

d
d+�

> 


+�

AB;AB CC;DD
�
�+c

+ �
�+d

> a
a+c

+ b
b+d

AB;AB DD;CC
�
�+


> 1
2

a
a+


+ 1
2

b
b+


AB;AB CD;CD



+�

> 1
2

c
c+�

+ 1
2

d
d+�

Table 8: Equilibria with ab>cd
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Conditions Manager one Manager two
1
2

a
a+


+ 1
2

b
b+


> �
�+


AA;BB CD;CD



+a

+ 


+b

> c
c+a

+ d
d+b

BB;AA CD;CD
1
2

c
c+�

+ 1
2

d
d+�

> 


+�

AB;AB CC;DD
�
�+c

+ �
�+d

> b
b+c
+ a

a+d
AB;AB DD;CC

�
�+


> 1
2

a
a+


+ 1
2

b
b+


AB;AB CD;CD



+�

> 1
2

c
c+�

+ 1
2

d
d+�

Table 9: Equilibria with ab<cd

5.5 Sequential Equilibrium

Comparing the results of the simultaneous with the sequential game, we do not
get a general solution. We cannot generally show that both the simultaneous
and sequential game coincide. However, we consider some examples of sequential
equilibria in this section. In the sequential game, manager two moves �rst and
manager one reacts.

Example 3 Suppose that the parameter conditions are as follows: a = 10; � =
6; b = 5; c = 12:5; 
 = 8; d = 4 such that 
2 > ab = cd > �2. In a simultaneous
game, we get the following strategy combinations determining Nash equilibria
according to the last section: (i; vi) or (ii; vi). The winning probabilities in a
simultaneous game are as follows:

p1(�) =
1

2

a

a+ 

+
1

2

b

b+ 

= 0:47

p2(�) =
1

2





 + a
+
1

2





 + b
= 0:53

However, the subgame perfect Nash equilibria in a corresponding sequential game
is determined by backwards induction. Manager two anticipates manager one�s
optimal reaction. It is easy to show that manager two optimally plays (CD;CD)
and then manager one plays (AA;BB) or (BB;AA) in a subgame perfect equilib-
rium. The results of the sequential game coincides with the results of the simul-
taneous game. However, this equilibrium has a special property because manager
two�s winning probability is higher than manager one�s winning probability even if
we have the parameter condition ab = cd. The reason is that manager two has a
relatively high heterogeneous output 
 such that his winning probability is higher
than 0:5 in equilibrium. Thus, a good harmony of heterogeneous employees may
be valuable for �rms. Investing into the harmony of di¤erent types is pro�table
according to this example. For instance, if - ceteris paribus - 
 = 9 (
 = 10),
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then manager two�s winning probability is 0:54 (0:58) which is even higher than
0:53.

Example 4 Suppose that the parameter conditions are as follows: a = 12; � =
6; b = 5; c = 12:5; 
 = 8; d = 4 such that 
2 > ab > cd > �2. In a simultaneous
game, we get the following two strategy combinations determining Nash equilibria
according to the last section: (i; vi) or (ii; vi). The winning probabilities in a
simultaneous game are as follows:

p1(�) =
1

2

a

a+ 

+
1

2

b

b+ 

= 0:49

p2(�) =
1

2





 + a
+
1

2





 + b
= 0:51

However, the subgame perfect Nash equilibria in a corresponding sequential game
are determined by backwards induction. Manager two anticipates manager one�s
optimal reaction. It is easy to show that manager two optimally plays (CD;CD)
and manager one reacts with (AA;BB) or (BB;AA) in a subgame perfect equi-
librium. Once again, the results of the sequential game coincides with the results
of the simultaneous game even if we have the condition ab > cd (in contrast to
the previous example).

Example 5 Suppose that the parameter conditions are as follows: a = 10; � =
9; b = 5; c = 12:5; 
 = 8; d = 4 such that �2 > 
2 > ab = cd. In a simultane-
ous game, we get the following two strategy combinations determining the Nash
equilibrium according to the last section: (iiii; vi). The winning probabilities in a
simultaneous game are as follows:

p1(�) =
1

2

�

�+ 

+
1

2

�

�+ 

= 0:53

p2(�) =
1

2





 + �
+
1

2





 + �
= 0:47

However, the subgame perfect Nash equilibria in a corresponding sequential game
is determined by backwards induction. Manager two anticipates manager one�s
optimal reaction. Manager two optimally plays (CD;CD) and manager one re-
acts with (AB;AB) in a subgame perfect equilibrium. It is easy to see that the
results of the sequential game coincides with the results of the simultaneous game.

5.6 Comparison

The generalized model in this appendix shows that �rms can have di¤erent win-
ning probabilities in equilibrium in contrast to the basic model. Furthermore, we
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show that the application with a logit contest function does not qualitatively dif-
fer from the application with a logistic contest function. Equilibria in the logistic
setting depend on di¤erences. Similarly, equilibria in the logit setting depend
on ratios. In the generalized model, however, we cannot generally conclude that
there is no second mover advantage in a sequential game in contrast to the basic
model.
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