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1 Introduction

The uncertainty of outcome hypothesis is probably the most unique characteristic of the

professional team sports industry. According to this hypothesis, fans prefer to attend contests

with an uncertain outcome and enjoy close championship races.1 Unlike Wal-Mart, Sony,

and BMW who bene�t from weak competitors in their industries, FC Barcelona and the

New York Yankees need strong competitors to �ll their stadiums. Since weak teams produce

negative externalities on strong teams, many professional sports leagues have introduced

revenue sharing arrangements to, at least partly, internalize these externalities and increase

competitive balance. However, the economic e¤ect of such revenue-sharing arrangements is

heavily disputed in the literature.

Talent investments in professional sports clubs are a dynamic phenomenon. Since the

majority of players sign multiple year contracts, most of the talent acquired in this season will

also be available in the next season. Thus, today�s talent investments determine tomorrow�s

talent stock and expected future pro�ts. From our point of view, a major shortcoming of

the sports economic literature is the disregard of this inter-temporal investment e¤ect.

Almost all contributions consider static models focusing on one period only (e.g., see

Atkinson et al. (1988), Dietl and Lang (2008), Fort and Quirk (1995), Szymanski and Késenne

(2004) and Vrooman (1995, 2008)). Static models, however, do not analyze the dynamics

leading to convergence or divergence of clubs�playing strengths, and therefore they cannot

di¤erentiate between the short and long run e¤ects of revenue sharing on competitive balance.

One exception is El-Hodiri and Quirk (1971) who develop a dynamic decision-making

model of a professional sports league. They con�rm the "invariance proposition" and show

that revenue sharing does not in�uence competitive balance. Their model, however, is based

on some critical assumptions. First, they assume a �xed supply of talent because the total

amount of talent is exogenously given in their model.2 Second, the speci�cation of the club�s

1See e.g., Lee and Fort (2008).
2As Szymanski (2004) has shown, the assumption of �xed talent supply is often used to justify Walrasian

�xed-supply instead of Contest-Nash conjectures. Under Walrasian �xed-supply conjectures, the quantity of

2



cost function is restrictive since they assume constant marginal costs. Our analysis shows

that the cost function has a signi�cant e¤ect on the transitional dynamics in the model.

Grossmann and Dietl (2009) analyze the e¤ect of revenue sharing in the context of a

two-period model. They focus on the e¤ect of di¤erent equilibrium concepts (open-loop

and closed-loop equilibria) on clubs�optimal investment decisions. This two-period model,

however, does not allow any conclusions regarding the possible convergence of clubs�playing

strengths. An in�nite period model is required to analyze these dynamics aspects.

In this paper, we account for the dynamic perspective of clubs�talent investments by

developing a dynamic model with an in�nite time horizon. In each period, two pro�t-

maximizing clubs invest in playing talent in order to accumulate talent stock, which de-

preciates over time. The available stock of playing talent determines the clubs�winning

percentages in each period, which ultimately, determine clubs�revenues. We show that the

clubs�investment decisions and the e¤ect of revenue sharing on competitive balance depend

on a combination of the following three factors: (i) the cost function of talent investments,

(ii) the clubs�market sizes and (iii) the initial endowments of talent stock. We analyze how

these factors interact in the transition to the steady state (short run) as well as in the steady

state itself (long run).

The remainder of this paper is organized as follows. In Section 2, we explain the model.

The results are presented in Section 3. In Subsection 3.1, we solve the dynamic problem and

analyze the e¢ ciency conditions. In Subsection 3.2, we compute the steady states and derive

comparative statics. In Subsection 3.3, we analyze the transitional dynamics of the model

for symmetric initial endowments, and in Subsection 3.4 for asymmetric initial endowments.

Finally, Section 4 concludes.

talent hired by at least one club owner is determined by the choices of all other club owners.
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2 Model Speci�cation

The following dynamic model describes the investment behavior of two pro�t-maximizing

clubs which compete in a professional team sports league. The investment horizon comprises

an in�nite number of periods in discrete time. We interpret one period as one season, where

expected pro�ts in period t 2 f0; :::;1g are discounted by �t with � 2 (0; 1).

In each period t, club i 2 f1; 2g invests a certain amount � i;t > 0 into playing talent

in order to accumulate a stock of playing talent, Ti;t � 0, which depreciates over time. We

assume that playing talent is measured in perfectly divisible units that can be hired at a

competitive market for talent, generating strictly convex costs c(� i;t). Thus, c0(� i;t) > 0 and

c00(� i;t) > 0 for � i;t > 0, t 2 f0; :::;1g.3

The stock of playing talent Ti;t linearly increases (ceteris paribus) through talent invest-

ments � i;t in period t. Thus, Ti;t is a state variable and is given by the talent accumulation

equation

Ti;t = (1� �)Ti;t�1 + � i;t; i 2 f1; 2g; t 2 f0; :::;1g (1)

where � 2 (0; 1) represents the depreciation factor. Equation (1) shows that replacements are

necessary in order to maintain the existing stock of playing talent. Before the competition

starts, i.e., in period t = �1, each club i is assumed to have initial endowments of talent

stock given by Ti;�1 � 0.

In each period t, the talent stock determines the clubs�win percentages. The win per-

centage of club i is characterized by the contest-success function (CSF) which maps club

i�s and club j�s talent stock (Ti;t; Tj;t) into probabilities for each club.4 We apply the logit

approach, which is the most widely used functional form of a CSF in sporting contests.5 The

3Note that, in Section 3.4.1, we consider linear costs c(� i;t) = �� i;t with a constant marginal cost para-
meter � such that c0(� i;t) = � > 0 and c00(� i;t) = 0:

4In the subsequent analysis i; j 2 f1; 2g; j 6= i and t 2 f0; :::;1g, if not otherwise stated.
5The logit CSF was generally introduced by Tullock (1980) and subsequently axiomatized by Skaperdas

(1996) and Clark and Riis (1998). An alternative functional form would be the probit CSF (e.g., Lazear and
Rosen, 1981; Dixit, 1987) and the di¤erence-form CSF (e.g., Hirshleifer, 1989).

4



win percentage of club i in period t is then given by

wi(Ti;t; Tj;t) =
T 
i;t

T 
i;t + T


j;t

: (2)

Note that club i�s win percentage is an increasing function of its own talent stock. We de�ne

wi(Ti;t; Tj;t) := 1=2, if T


i;t = T



j;t = 0. Given that the win percentages must sum up to unity,

we obtain the adding-up constraint: wj = 1� wi.

Moreover, we assume that the supply of talent is elastic. As a consequence, we consider

the so-called Nash equilibrium model rather than the Walrasian equilibrium model, and we

thus adopt the "Contest-Nash conjectures" @� i;t
@�j;t

= 0.6

The parameter 
 > 0 is called the "discriminatory power" of the CSF and re�ects the

degree to which talent a¤ects the win percentage.7 As 
 increases, the win percentage for

the club with the higher talent stock increases, and di¤erences in the talent stock a¤ect the

win percentage in a stronger way. In the limiting case where 
 goes to in�nity, we would

have a so-called �all-pay auction�, i.e., a perfectly discriminating contest.

The revenue function of club i is given by Ri(wi;mi) and is assumed to have the following

properties:8 either @Ri
@wi

> 0 and @2Ri
@w2i

� 0 for all wi 2 [0; 1] or 9 w�i 2 [0; 1] such that if

wi � w�i , then @Ri
@wi

< 0, otherwise @Ri
@wi

> 0, and @2Ri
@w2i

� 0 everywhere. In order to guarantee

an equilibrium, we assume that w�i � 0:5 for at least one club. The parameter mi > 0

represents the market size of club i. To make further progress and to derive closed form

solutions, we have to simplify the model. We assume that the revenue function of club i is

6According to Szymanski (2004), only the Contest-Nash conjectures are consistent with the concept of
Nash equilibrium (see also Szymanski and Késenne, 2004 and Késenne, 2007). However, the disagreement
regarding "Nash conjectures" vs. "Walrasian conjectures" remains an open area for research. For instance,
Fort and Quirk (2007) describe a competitive talent market model, which is consistent with a unique rational
expectation equilibrium (see also Fort, 2006).

7We are grateful to an anonymous referee who suggested that we integrate this parameter in our model.
See also Dietl et al. (2008) and Fort and Winfree (2009) for an analysis of the parameter 
 in a static model.

8See Szymanski and Késenne (2004) on p. 168.
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linear in its own win percentage and is speci�ed by

Ri(wi(Ti;t; Tj;t);mi) = mi � wi(Ti;t; Tj;t):

This revenue function has the desired properties and is consistent with the revenue func-

tion used e.g., by Dietl et al. (2009), Hoehn and Szymanski (1999), Szymanski (2003) and

Vrooman (2007, 2008).9 Note that Szymanski and Késenne (2004) also use an identical

revenue function in Section III on page 171.

Moreover, we introduce a gate revenue sharing arrangement. The after-sharing revenues

of club i, denoted by bRi, can be written as
bRi = �Ri + (1� �)Rj = � miT



i;t

T 
i;t + T


j;t

+ (1� �)
mjT



j;t

T 
i;t + T


j;t

;

with � 2 (1
2
; 1]. From the home match, club i obtains share � of its own revenues Ri, and

from the away match, it obtains share (1 � �) of club j�s revenues Rj. Note that a higher

parameter � represents a league with a lower degree of redistribution. Thus, the limiting

case of � = 1 describes a league without revenue sharing.

Club i�s expected pro�ts E[�i;t] in period t are given by after-sharing revenues minus

costs, i.e.,

E[�i;t] = bRi(Ti;t; Tj;t)� c(� i;t):
Club i maximizes its expected discounted pro�ts

P1
t=0 �

tE[�i;t] with respect to the stream

f� i;tg1t=0 and subject to Ti;t = (1� �)Ti;t�1+ � i;t. We assume that both clubs have an outside

option of zero pro�ts before the competition starts.

In order to solve the model in an in�nite horizon model, we use the open-loop equilibrium

concept, which facilitates computations.10

9Even though the revenue function is quadratic in own win percentages in the mentioned articles, only
the part where @Ri

@wi
> 0 is relevant for their analysis. It is obvious that equilibria in which @Ri

@wi
< 0 holds do

not exist. Moreover, the following proofs hold for all 
 2 (0;1). However, if 
 > 1, the revenue function has
both convex and concave parts. Therefore, the existence of a maximum is only guaranteed, if 0 < 
 � 1.
10See, for instance, Fudenberg and Tirole (1991). Their paper discusses the di¤erences between the two
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3 Results

3.1 Dynamic Program

We solve the dynamic program for club i by Bellman:11

v(Ti;t�1) = max
� i;t;Ti;t

nbRi(Ti;t; Tj;t)� c(� i;t) + �v(Ti;t)o s.t. Ti;t = (1� �)Ti;t�1 + � i;t

Note that v(�) represents the club�s value function. Moreover, club i takes Tj;t as given in

period t 2 f0; :::;1g according to the open-loop concept. The associated Lagrangian L with

multiplier �t has the following form:

L = �
miT



i;t

T 
i;t + T


j;t

+ (1� �)
mjT



j;t

T 
i;t + T


j;t

� c(� i;t) + �v(Ti;t) + �t[(1� �)Ti;t�1 + � i;t � Ti;t]

The corresponding �rst order conditions are given by

@L
@� i;t

= �c0(� i;t) + �t = 0;

@L
@Ti;t

= �

miT


�1
i;t T



j;t�

T 
i;t + T


j;t

�2 � (1� �)
mjT

�1
i;t T



j;t

(T 
i;t + T


j;t)

2
+ �

@v(Ti;t)

@Ti;t
� �t = 0;

@L
@�t

= (1� �)Ti;t�1 + � i;t � Ti;t = 0:

(3)

The envelope theorem gives us @L
@Ti;t�1

=
@v(Ti;t�1)
@Ti;t�1

= �t(1��). Using the �rst order conditions

and the updated envelope theorem, and assuming that clubs have identical market sizes, i.e.,

concepts. Generally, they argue that in case of many agents the di¤erences between the closed-loop and
open-loop equilibria are negligible. Moreover, Grossmann and Dietl (2009) show that the open-loop and
closed-loop equilibrium coincide in a similar two-period model if costs are linear.
11In order to solve the model, we follow King et al. (1988): In a �rst step, we solve the dynamic problem

and analyze the e¢ ciency conditions (Euler equations). Then we compute the steady states (long run), and
afterwards, we analyze the transitional dynamics (short run). Note that, henceforth the results are only
presented for club i. The corresponding results for club j can be found by changing subscripts i and j.
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mi = mj = m,12 we get the following Euler equation for club i:

(2�� 1)

mT 
�1i;t T



j;t

(T 
i;t + T


j;t)

2
= c0(� i;t)� �(1� �)c0(� i;t+1) (4)

Equation (4) re�ects the well-known inter-temporal trade-o¤: marginal bene�t of an invest-

ment into talent (left hand side) must equal marginal cost of talent (right hand side) in an

optimum. Note that the marginal bene�t of an investment is increasing in � andm. The �rst

term on the r.h.s of the equation indicates the instantaneous marginal cost of an investment,

whereas the second term on the r.h.s. represents the inter-temporal e¤ect of today�s invest-

ment. That is, an investment of one unit today reduces marginal costs tomorrow, which has

to be discounted by �(1� �).

Moreover, we can solve the Euler equation (4) recursively forward and get the following

result for club i:

(2�� 1)
m
TX
k=0

(
[�(1� �)]k

T 
�1i;t+kT


j;t+k�

T 
i;t+k + T


j;t+k

�2
)
= c0(� i;t)� [�(1� �)]T+1 c0(� i;t+T+1)| {z }

T!1
= 0

Note that the second term on the right hand side vanishes as T converges to in�nity since

�(1� �) 2 (0; 1) such that

(2�� 1)
m
1X
k=0

(
[�(1� �)]k

T 
�1i;t+kT


j;t+k�

T 
i;t+k + T


j;t+k

�2
)
= c0(� i;t):

Today�s marginal cost of an investment (r.h.s.) equals the sum of today�s and (all) discounted

future expected marginal bene�ts (l.h.s.).

12In Section 3.4.1, we extend our model and allow for clubs that have di¤erent market sizes. For this
purpose, we simultaneously have to simplify the cost function by assuming linear costs.
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3.2 Steady States

Generally, in a steady state all variables grow with a constant rate. In this model, however,

we have a stationary economy such that the growth rate is zero. Thus, Ti;t = Ti;t+1 � Ti

in a steady state. Equation (1) implies that � i = �Ti in a steady state, i.e., the amount of

playing talent which is lost through depreciation is replaced by newly recruited players.

By neglecting the time subscript t, we rewrite the Euler equation (4) for club i as follows:13

(2�� 1)

mT 
�1i T 
j
(T 
i + T



j )
2
= (1� �(1� �))c0(� i) (5)

Dividing equation (5) by the corresponding Euler equation for the other club j, we derive

Tj
Ti
= c0(� i)

c0(�j)
and can establish the following proposition:

Proposition 1 test

If mi = mj, then Ti = Tj � T and � i = � j � � in the steady state (independent of the

distribution of initial endowments). As a consequence, revenue sharing has no e¤ect on

competitive balance in the long run.

Proof. See Appendix 5.1

Proposition 1 implies that talent investments and the talent stock are identical for both

clubs in the steady state, i.e., there is not only relative convergence but also absolute con-

vergence of talent stocks in the long run as long as clubs have identical market sizes. This

result holds even if clubs started with di¤erent initial endowments Ti;�1 and Tj;�1. It follows

that revenue sharing has no e¤ect on competitive balance in the steady state, and therefore,

the invariance proposition holds in the long run.

Nonetheless, the question remains whether and how quickly the steady state is achieved.

The transitional dynamics are discussed in the next sections, where we show how revenue

sharing in�uences competitive balance in the short run, i.e., during the talent accumulation

13Henceforth, variables without a time subscript indicate steady states.
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process. Prior to this, we �rst derive the comparative statics of the steady state talent stock

and investment.

According to equation (5) and the results of Proposition 1, we implicitly get the steady

state values T and � = �T :

(2�� 1)
m
4T

= (1� �(1� �))c0(�T ) (6)

Comparative statics lead to the following proposition:

Proposition 2 test

(i) Talent stock T in the steady state is increasing in m, 
, � and �, but decreasing in

�.

(ii) Talent investment � in the steady state is increasing in m, 
, �; � and �.

Proof. See Appendix 5.2

Proposition 2 (i) shows that a larger market size, a higher discriminatory power, a higher

discount rate and/or a lower degree of revenue sharing (i.e., a higher �) imply a higher talent

stock in the steady state.14 On the other hand, a higher depreciation rate reduces incentives

to accumulate talent in the steady state.

Since higher parameters m, 
, � and � imply a higher talent stock T in the steady

state, it is necessary to increase the steady state talent investment � in order to sustain this

higher talent stock T . Thus, � is increasing in the aforementioned parameters as stated in

Proposition 2 (ii). Furthermore, a higher depreciation factor also increases the steady state

talent investment.15

14If the market size and/or the revenue sharing parameter are increasing, then it is quite intuitive that
incentives to invest in talent are also increasing due to higher marginal bene�ts of talent investments. A
higher discriminatory power implies a higher marginal revenue in the steady state, which also leads to a
higher talent stock. Furthermore, we observe a higher talent stock in the long run for a higher discount rate
�. Hence, as future expected pro�ts get less discounted, clubs invest more in talent accumulation.
15A higher depreciation factor �, however, has two e¤ects on the steady state talent investments � = �T (�).

First, a higher � reduces the talent stock T (�) such that the steady state investment � is lower in order to
maintain the talent stock. Second, a higher � also implies that clubs have to invest more in talent in order to
maintain the steady state talent stock. Thus, a higher depreciation factor implies higher talent investments.
The second e¤ect dominates the �rst e¤ect in the model such that � is increasing in �.
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3.3 Transitional Dynamics with Symmetric Initial Endowments

In this section, we assume that both clubs have identical initial endowments. That is,

the initial talent stock in period t = �1 is the same for both clubs with Ti;�1 = Tj;�1 �

T�1.16 This assumption has special implications for the clubs�optimal investment behavior.

Equation (4) implies
Tj;t
Ti;t

=
c0(� i;t)� �(1� �)c0(� i;t+1)
c0(� j;t)� �(1� �)c0(� j;t+1)

(7)

We derive the following results:

Proposition 3 test

If Ti;�1 = Tj;�1 � T�1, then � i;t = � j;t � � t for all t 2 f0; :::;1g. Therefore, symmet-

ric initial endowments imply that clubs� talent investment and talent stock are identical in

each period.

Proof. See Appendix 5.3

Proposition 3 shows that both clubs optimally invest an identical amount in talent in

each period as long as initial endowments of talent stock (Ti;�1 and Tj;�1) are identical. Thus,

we can neglect clubs�subscripts i and j in this subsection.

The optimal path of talent investments, however, cannot be explicitly determined in

case of a general cost function. The dynamics are implicitly characterized by the Euler

equation (4), the talent accumulation equation (1), the initial endowments, and the results

of Proposition 3. Even though we are not able to explicitly solve the model, we can plot

the dynamics in a phase diagram, where we have to consider the dynamics of Tt and � t

separately.17

For all initial endowments T�1, there is a unique value � 0 such that the dynamic path

leads into the steady state. The unique value � 0 is determined by the saddle path in Figure 1.
16Note that, even in a perfectly symmetric contest, symmetric club investments are not compulsory ex

ante. We can show in this section, however, that a symmetric investment behaviour is the unique solution
in our model.
17Note that the dynamics are just approximately true in a phase diagram because the model is based on

discrete time and the phase diagram rather quali�es for continuous time. Nevertheless, we use the phase
diagram to strengthen our intuition. In Appendix 5.4, we derive the computations for this phase diagram.
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This saddle path is consistent with the e¢ ciency conditions and the accumulation equations.

Note that if T�1 < T , then initial talent investments � 0 are higher than the steady state

talent investments � . Otherwise, if T�1 > T , then initial investments � 0 are lower than the

steady state talent investments � . In both cases, the dynamic path leads to the steady state.

Figure 1: Saddle Path in the Phase Diagram

3.4 Transitional Dynamics with Asymmetric Initial Endowments

In this section, we assume that both clubs have di¤erent initial endowments in period t = �1,

i.e., Ti;�1 6= Tj;�1. Again, the Euler equation, the talent accumulation equation and the

initial endowments represent the dynamics of the model and characterize the clubs�optimal

investment behavior.

It is not possible to solve this model explicitly to provide an explicit computation of the

investment path in the transition to the steady state. As a consequence, we further specify

the cost function and consider linear cost in the next subsection. In case of linear costs, we

are able to explicitly compute the steady state variables and to determine the clubs�optimal

investment in each period. In Subsection 3.4.2, we consider a quadratic cost function and
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derive the optimal investment path through a simulation.18

3.4.1 Linear Cost Function

In this subsection, we consider linear costs c(� i;t) = �� i;t and, simultaneously, allow for

di¤erent market sizes.19 Without loss of generality, we assume that club i has a larger

market size than club j such that mi > mj > 0. Due to the larger market size, club i

generates higher revenues for a given win percentage than club j. We get the following Euler

equation for club i:

(�mi � (1� �)mj)

T 
�1i;t T



j;t

(T 
i;t + T


j;t)

2
= �[1� �(1� �)]

Hence, club i�s talent stock in each period t 2 f0; :::;1g is given by

Ti;t =

 (�mi � (1� �)mj)


+1 (�mj � (1� �)mi)



�[1� �(1� �)] [(�mj � (1� �)mi)

 + (�mi � (1� �)mj)


]
2 :

Thus, the steady state is attained immediately in the �rst period, i.e. in period zero, regard-

less of initial endowments of talent stock. Moreover, we derive that club i�s talent stock is

higher than club j�s talent stock in each period because20

Ti;t
Tj;t

=
�mi � (1� �)mj

�mj � (1� �)mi

> 1;

for all t 2 f0; :::;1g. It follows that club i is the dominant team that has a higher win

percentage in each period t 2 f0; :::;1g compared to club j because
�
wi;t
wj;t

� 1


=

Ti;t
Tj;t

> 1 inde-

pendent of initial endowments. It follows that, even if club j had higher initial endowments

in t = �1, there would be an immediately leapfrogging by club i such that club i would
18Furthermore, we brie�y discuss the main results of an n-club league with n > 2 in Appendix 5.5.
19Note that we are able to relax the restrictive assumption of identical market sizes in this subsection since

we have simpli�ed the model by using linear costs.
20We assume that �mj � (1� �)mi > 0 in order to guarantee positive equilibrium investments by club j

(see also Szymanski and Késenne (2004)).
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overtake club j with respect to the talent stock and win percentage in t = 0 (see Figure 2).

Figure 2: Leapfrogging of Talent Stocks

These results show that, if costs are linear and mi 6= mj, convergence to di¤erent steady

states occurs in the �rst period, i.e., in t = 0, such that the league is characterized through

a persistent inequality.21

What is the e¤ect of revenue sharing in this case? We derive that the ratio wi;t
wj;t

is

decreasing in the revenue sharing parameter � for all t 2 f0; :::;1g. As a consequence, we

get the following proposition:

Proposition 4 test

If costs are linear and mi 6= mj, a higher degree of revenue sharing (i.e., a lower �) de-

creases competitive balance (independent of the distribution of initial endowments).

Proof. Straightforward and therefore omitted.
21In case of identical market sizes, i.e., mi = mj = m, clubs�talent stocks also converge in t = 0 but the

steady states are identical with Tt =
(2��1)
m

4�(1��(1��)) = Ti;t = Tj;t such that the league is perfectly balanced in

the long run. Initial talent investments are then given by � i;0 =
(2��1)
m

4�(1��(1��)) � (1 � �)Ti;�1. Thus, club i
invests more in the �rst period, the lower its initial endowments Ti;�1. For t � 1, both clubs exactly replace
depreciated talent such that talent investments are given by � t = �Tt = �

(2��1)
m
4�(1��(1��)) .

14



This proposition shows that revenue sharing produces a more unbalanced league and

thus the invariance principle does not hold. Note that our result in this dynamic setting

generalizes the static �nding of Szymanski and Késenne (2004).

3.4.2 Quadratic Cost Function

In this subsection, we consider a strictly convex cost function c(� i) = 1
2
� 2i . In order to focus

on the e¤ect of di¤erent initial endowments in the transition, we have to simplify matters

by assuming that clubs have identical market sizes, i.e., mi = mj = m, such that the clubs�

talent stocks are identical in the long run. According to equation (4), we derive the following

Euler equation for club i:

(2�� 1)

mT 
�1i;t T



j;t

(T 
i;t + T


j;t)

2
= � i;t � �(1� �)� i;t+1 (8)

Together with the talent accumulation equation (1) and the initial endowments of talent

stock Ti;�1, equation (8) determines club i�s optimal behavior. In contrast to the previous

subsection with linear costs, it is not possible to solve the model explicitly in the case of

quadratic costs to derive equations for the talent stock and investment in each period. How-

ever, we are able to run three di¤erent simulations to get more insights into the transitional

dynamics of the model.

For the three simulations, we �x the exogenous parameters as follows: � = 0:05; � =

0:99; 
 = 1 and m = 100. For this parameterization, the steady state values, which are

independent of initial endowments, are given by T = 91:670 and � = 4:583 for each club.

Moreover, in the �rst two simulations, we consider a league without revenue sharing (i.e.,

� = 1), whereas in the third simulation we vary � in order to analyze the e¤ect of revenue

sharing on competitive balance.22

22Note that the initial investments and optimal investment paths are computed by the "shooting method".
We separately choose initial investments for each club in order to undershoot and overshoot the corresponding
steady state talent stocks. In this way, we approximately determine the optimal investment paths.
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Di¤erent Initial Endowments and the Speed of Convergence In a �rst simulation,

we concentrate on the e¤ect of di¤erent initial endowments of talent stocks. The results

of the simulation are summarized in Table 1. Initial endowments of talent stock (initial

investments) are illustrated in rows 1 and 2 (3 and 4). Note that we only vary initial

endowments Tj;�1 for club j. For the benchmark case, represented in column 4, we consider

clubs with identical initial endowments Ti;�1 = 50 and Tj;�1 = 50. The variables half(Ti)

and half(Tj) in rows 5 and 6 measure the speed of convergence and indicate the period in

which the talent stocks Ti;t and Tj;t, respectively, have passed half of the way to the steady

state talent stock.

Simulation 1 2 3 4 5 6 7
Ti;�1 50 50 50 50 50 50 50
Tj;�1 20 30 40 50 60 70 80
� i;0 5:684 5:764 5:803 5:814 5:805 5:782 5:749
� j;0 7:378 6:767 6:253 5:814 5:434 5:101 4:808

half(Ti) 8 8 8 8 8 8 8
half(Tj) 8 8 8 8 8 9 9
V ariation Tj;�1 Tj;�1 Tj;�1 Benchmark Tj;�1 Tj;�1 Tj;�1

Table 1: Di¤erent Initial Endowments and the Speed of Convergence

Table 1 shows that the club with lower initial endowments invests more in talent compared

to the other club in t = 0. It also follows that a higher di¤erence in initial endowments implies

an (inversely) higher di¤erence in talent investments in the �rst period. The values half(Ti)

and half(Tj) indicate that heterogeneity with respect to initial endowments does not have

a large impact on the talent stocks�speed of convergence. Both clubs pass half of the way

to the steady state talent stock after 8 or 9 periods.23

Moreover, in contrast to linear costs, convergence to the steady state does not occur in

the �rst period if clubs have quadratic costs. Clubs�talent stocks smoothly converge over

time.
23Even if Tj;�1 = 200 and Ti;�1 = 50, club i (club j) would pass half of the way in period 10 (period 9).
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Redistribution and the Speed of Convergence In a second simulation, we concentrate

on the e¤ect of redistribution in clubs�initial endowments on the speed of convergence. That

is, in contrast to the �rst simulation, we vary not only the initial endowments of club j

but also the initial endowments of club i such that the sum of initial endowments remains

constant. Table 2 summarizes the main results.

Simulation 1 2 3 4 5
Ti;�1 30 35 40 45 50
Tj;�1 70 65 60 55 50
� i;0 6:628 6:425 6:221 6:017 5:814
� j;0 4:999 5:203 5:407 5:610 5:814

half(Ti) 8 8 8 8 8
half(Tj) 9 9 8 8 8
half(wi) 4 4 4 4 0
half(wj) 4 4 4 4 0
V ariation Ti;�1; Tj;�1 Ti;�1; Tj;�1 Ti;�1; Tj;�1 Ti;�1; Tj;�1 Benchmark

Table 2: Redistribution and the Speed of Convergence

The simulation shows that redistribution of initial endowments also does not change

the speed of convergence of the state variables because half(Ti) and half(Tj) do not vary

signi�cantly.

A league�s policy maker, however, might also be interested in the speed of convergence

of the win percentages. Therefore, we additionally consider the variables half(wi) and

half(wj), representing the period in which the win percentages of club i and club j, respec-

tively, have passed half of the way to the steady state win percentage given by 0:5. In this

case also, we derive that redistribution of initial endowments has no e¤ect on the speed of

convergence of the win percentages.24

Revenue Sharing and the Speed of Convergence In a third simulation, we analyze

how revenue sharing a¤ects the speed of convergence of the win percentages. We consider

24It is clear that in the benchmark case with identical initial endowments (column 5), half(wi) and
half(wj) equal zero because the stock of talent for both clubs will be identical in all periods (see also Section
3.3).

17



the same distribution of initial endowments as in the second simulation, however, now the

revenue-sharing parameter � varies. Table 3 summarizes the main results.

Simulation � = 0:6 � = 0:7 � = 0:8 � = 0:9 � = 1
half(wi) 11 8 6 5 4
half(wj) 11 8 6 5 4

Table 3: Revenue Sharing and the Speed of Convergence

According to the simulation, we derive the following proposition:

Proposition 5 test

If costs are quadratic and mi = mj, a higher degree of revenue sharing (i.e., a lower �)

implies a lower speed of convergence of the win percentages in the transition (independent of

redistribution of initial endowments).

Proof. Follows from the simulation.

According to this proposition, a league�s policy maker should implement a lower degree

of revenue sharing in order to increase the speed of convergence of the win percentages in

the transition.

Example 1 For initial endowments Ti;�1 = 30 and Tj;�1 = 70, consider Figure 3. This

�gure shows that a lower � implies a lower speed of convergence of the win percentages.

Note that the steady state win percentages are given by wi = wj = 0:5 and the variables

representing half of the way to the steady states are half(wi) = 0:4 and half(wj) = 0:6. The

respective win percentages pass half(wi) and half(wj) according to Table 3.25

25Note that we obtain qualitatively similar �gures after a redistribution of initial endowments, e.g., Ti;�1 =
40 and Tj;�1 = 60.
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Figure 3: The E¤ect of Revenue Sharing on the Speed of Convergence

4 Conclusion

Investment decisions in professional team sports leagues are a dynamic economic phenom-

enon. Today�s talent investments determine tomorrow�s talent stock and expected future

pro�ts. We develop an in�nite period model of a professional team sports league to show

that, even if clubs have di¤erent initial talent endowments, the transitional dynamics will

lead to a fully balanced league in the long run as long as clubs have the same market size.

In this case, revenue sharing has no e¤ect on competitive balance and thus the famous

invariance principle holds.

Moreover, we show that the dynamics are in�uenced mainly by the cost function. In

case of linear costs, convergence occurs immediately: the steady state is attained in the �rst

period. Furthermore, if clubs di¤er in market size, then the steady state variables also di¤er,

and the league is characterized by a persistent inequality regardless of the initial endowments.

In this case, revenue sharing decreases competitive balance.

In case of a quadratic cost function, convergence to the steady state does not occur in the
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�rst period. Our simulation further shows that initial endowments a¤ect initial investments.

The club with lower initial endowments invests more in the �rst period than the club with

higher initial endowments. Moreover, we derive that redistribution of initial endowments

a¤ects neither the speed of convergence of the state variables nor the speed of convergence

of the win percentages. In this case, revenue sharing decreases the speed of convergence of

the win percentages in the transition.

The current revenue-sharing schemes vary widely among professional sports leagues all

over the world. The most prominent is possibly that operated by the National Football

League (NFL), where the visiting club secures 40% of the locally earned television and gate

receipt revenue. In 1876, Major League Baseball (MLB) introduced a 50-50 split of gate

receipts that was reduced over time. Since 2003, all the clubs in the American League have

put 34% of their locally generated revenue (gate, concession, television, etc.) into a central

pool, which is divided then equally among all the clubs. In the Australian Football League

(AFL), gate receipts were at one time split evenly between the home and the visiting team.

This 50-50 split was �nally abolished in 2000.

Our analysis suggests that a league policy maker should implement a lower degree of

revenue sharing in order to increase the competitive balance (in case of linear costs) or the

speed of convergence of clubs�win percentages (in case of quadratic costs). Whether clubs

have linear or quadratic costs remains an empirical question and is left for further research.

5 Appendix

5.1 Proof of Proposition 1

First, we prove that Ti = Tj and � i = � j in a steady state. We provide a proof by contra-

diction: Suppose that Tj > Ti: using equation (5) for club i and club j, we get
Tj
Ti
= c0(� i)

c0(�j)
.

This implies that c0(� i) > c0(� j). Strict convexity of the cost function yields � i > � j. Using

� i = �Ti and � j = �Tj we get Ti > Tj, which is a contradiction to Tj > Ti. By symmetry,
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there is a contradiction, if we suppose that Ti > Tj: Therefore, we conclude that Ti = Tj:

Furthermore, we get � i = � j because � i = �Ti and � j = �Tj:

Note that Ti = Tj holds independent of �. Thus,
T 
i

T 
i +T


j
= wi(Ti; Tj) =

1
2
= wj(Ti; Tj) =

T 
j
T 
i +T



j
is constant, which implies that revenue sharing has no e¤ect on competitive balance

in the long run. �

5.2 Proof of Proposition 2

Here, we prove the comparative statics results. First, we de�ne the function F (T; �; �;m; 
; �) �

(2��1)
m
4T
� (1��(1��))c0(�T ): In a steady state F (T; �; �;m; 
; �) = 0: Using the implicit

function theorem we get:

@T

@m
= �

@F (T;�;�;m;
;�)
@m

@F (T;�;�;m;
;�)
@T

= �
(2�� 1) 


4T

�(2�� 1) 
m
4T 2

� (1� �(1� �))c00(�T )� > 0

@T

@

= �

@F (T;�;�;m;
;�)
@


@F (T;�;�;m;
;�)
@T

= �
(2�� 1) m

4T

�(2�� 1) 
m
4T 2

� (1� �(1� �))c00(�T )� > 0

@T

@�
= �

@F (T;�;�;m;
;�)
@�

@F (T;�;�;m;
;�)
@T

= � (1� �)c0(�T )
�(2�� 1) 
m

4T 2
� (1� �(1� �))c00(�T )� > 0

@T

@�
= �

@F (T;�;�;m;
;�)
@�

@F (T;�;�;m;
;�)
@T

= �

m
2T

�(2�� 1) 
m
4T 2

� (1� �(1� �))c00(�T )� > 0

@T

@�
= �

@F (T;�;�;m;
;�)
@�

@F (T;�;�;m;
;�)
@T

= � ��c0(�T )� (1� �(1� �))c00(�T )T
�(2�� 1) 
m

4T 2
� (1� �(1� �))c00(�T )� < 0

Thus, we conclude that T is increasing in m, 
, �, and �, but it is decreasing in �, as stated

in Proposition 2(i).

Second, we de�ne the function G(� ; �; �;m; 
; �) � (2�� 1) �
m
4�
� (1� �(1� �))c0(�): In
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a steady state, G(� ; �; �;m; 
; �) = 0: Using the implicit function theorem we get:

@�

@m
= �

@G(�;�;�;m;
;�)
@m

@G(�;�;�;m;
;�)
@�

= �
(2�� 1) �


4�

�(2�� 1) �
m
4�2

� (1� �(1� �))c00(�)
> 0

@�

@

= �

@G(�;�;�;m;
;�)
@


@G(�;�;�;m;
;�)
@�

= �
(2�� 1) �m

4�

�(2�� 1) �
m
4�2

� (1� �(1� �))c00(�)
> 0

@�

@�
= �

@G(�;�;�;m;
;�)
@�

@G(�;�;�;m;
;�)
@�

= � (1� �)c0(�)
�(2�� 1) �
m

4�2
� (1� �(1� �))c00(�)

> 0

@�

@�
= �

@G(�;�;�;m;
;�)
@�

@G(�;�;�;m;
;�)
@�

= �
�
m
2�

�(2�� 1) �
m
4�2

� (1� �(1� �))c00(�)
> 0

@�

@�
= �

@G(�;�;�;m;
;�)
@�

@G(�;�;�;m;
;�)
@�

= �
(2�� 1)
m

4�
� �c0(�)

�(2�� 1) �
m
4�2

� (1� �(1� �))c00(�)
> 0

Thus, we conclude that the steady state value � is increasing in m, 
 � and �, as stated

in Proposition 2(ii). Moreover, � is increasing in � i¤ (2� � 1)
m
4�
> �c0(�). Note that

(2� � 1)
m
4�
> �c0(�) is always satis�ed. Using the steady state condition (2� � 1) �
m

4�
=

(1� �(1� �))c0(�), we get:

(2�� 1)
m
4�

=
(1� �(1� �))c0(�)

�
> �c0(�), 1 > �

Thus, we get @�
@�
> 0 i¤ 1 > �, which is true by assumption. �

5.3 Proof of Proposition 3

In a �rst step, we prove that if Ti;t�1 = Tj;t�1 � Tt�1, then � i;t = � j;t � � t for all t 2 f0; :::;1g.

Suppose that Ti;t�1 = Tj;t�1 and � i;t > � j;t. Equation (4) implies

� � Tj;t
Ti;t

=
c0(� i;t)� �c0(� i;t+1)(1� �)
c0(� j;t)� �c0(� j;t+1)(1� �)

:
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Note that � < 1 because Ti;t > Tj;t: Rewriting the last equation, we yield

� [c0(� j;t)� �c0(� j;t+1)(1� �)] = c0(� i;t)� �c0(� i;t+1)(1� �): (9)

Combining equation (9) with � i;t > � j;t we conclude that � i;t+1 > � j;t+1. This result implies

that Ti;t+1 > Tj;t+1, which itself implicates divergence of the state variables Ti;t and Tj;t. It

follows from this divergence of the state variables that the winning probabilities also diverge

across clubs such that the transversality condition (positive expected discounted pro�ts for

both clubs) is violated. However, � i;t = � j;t (t = 0; :::;1) is consistent both with the

combined Euler equation (7) and with the transversality condition. This result proves that

if Ti;t�1 = Tj;t�1 � Tt�1, then � i;t = � j;t � � t for all t 2 f0; :::;1g.

Using this result, we recursively conclude that both clubs invest an identical amount

in each period. It directly follows that the state variables are also identical. Thus, under

the restriction Ti;�1 = Tj;�1, clubs�decisions are symmetric. This result is summarized in

Proposition 3. �

5.4 Derivation of the Phase Diagram

First, we investigate the dynamics of � t. Combining equation (4) with the results of Propo-

sition 3, yields

(2�� 1)
m
4Tt

= c0(� t)� �(1� �)c0(� t+1):

We note that �� t+1 = � t+1 � � t = 0 if (2� � 1)
m
4Tt

= (1 � �(1 � �))c0(� t). Therefore, we

get a decreasing function in the (� ; T )�space if �� = 0. This curve is represented in Figure

1. In the northeast of this curve, it holds that �� t+1 > 0 such that � increases. In the

southwest of this curve, it holds that �� t+1 < 0 and � decreases. The directions of motion

are summarized by the vertical arrows in Figure 1.

Second, we investigate the dynamics of Tt. The talent accumulation equation combined

with Proposition 3 implies that Tt = (1� �)Tt�1+ � t , �Tt = ��Tt�1+ � t. Hence, �Tt = 0
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if � t = �Tt. Note that � t = �Tt is also represented in Figure 1. In the southeast of this

curve, it holds that �Tt < 0, whereas in the northwest it holds that �Tt > 0. Once again,

the horizontal arrows indicate the directions of motion in the (� ; T )�space.

5.5 Extension: n-Club League

In this extension, we consider a league with n > 2 clubs and show that many results from

the two-club league still hold. We allow for heterogeneous clubs with respect to initial

endowments but assume that clubs have identical market sizes, i.e., mi = m for all i 2

f1; :::; ng. Moreover, we consider a league without revenue sharing, i.e., � = 1, because we

focus on the e¤ect of more clubs.

The win percentage of club i 2 f1; :::; ng is now de�ned as

wi =
n

2

T 
i;tPn
j=1 T



j;t

We derive the following Euler equation for club i 2 f1; :::; ng

n

2


mT 
�1i;t

P
j 6=i T



j;t�Pn

j=1 T


j;t

�2 = c0(� i;t)� �(1� �)c0(� i;t+1);

with t 2 f0; :::;1g. As in the two-club league, in the steady state it holds that Ti = T and

� i = � = �T for all i 2 f1; :::; ng. Moreover, we obtain the following implicit function for the

talent stock in the steady state

n� 1
n


m

2T
= [1� �(1� �)]c0(�T ):

It is easy to see that the talent stock in the steady state is increasing with the number of

clubs in the league.

In the following, we specify the cost function by assuming linear costs c(� i;t) = �� i;t.

In this case, we are able to determine the transitional path of the talent stocks. As in the

24



two-club league, the steady state is immediately attained in the �rst period, regardless of

initial endowments of talent stock. The steady state is given by

Tt =
n� 1
n


m

2[1� �(1� �)]� = T

with t 2 f0; :::;1g. According to the last equation, we derive that a higher number of clubs

in the league also increases the talent stock in each period.
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